Microstructure and oxidation of a Ni–Al based intermetallic coating formation on a Monel-400 alloy

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-10 DOI:10.1515/mt-2024-0038
T. Yener, Alperen Refik Bilal Özsarı, K. M. Döleker, A. Erdoğan, S. Yener
{"title":"Microstructure and oxidation of a Ni–Al based intermetallic coating formation on a Monel-400 alloy","authors":"T. Yener, Alperen Refik Bilal Özsarı, K. M. Döleker, A. Erdoğan, S. Yener","doi":"10.1515/mt-2024-0038","DOIUrl":null,"url":null,"abstract":"\n The purpose of this work was to examine how the microstructure and oxidation characteristics of Monel 400 Alloy were affected by the low-temperature aluminizing method. Monel 400 alloy was subjected to a low-temperature aluminizing procedure for 2 and 4 h at 600, 650, and 700 °C. Pure aluminum powder was used as the source of aluminum deposition to prepare the packs for the process. The activator and inert filler utilized were ammonium chloride (NH4Cl) and Al2O3 powder, respectively. The coating surfaces were characterized using energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM), as well as X-ray diffraction (XRD) analysis. It was discovered that the through-thickness variance in the layer microstructure varied between 4 and 30 µm, and that it increased with greater process temperatures and times. The coating layer hardness grew to 800 HV after the deposition process, whereas the matrix hardness remained at 200 HVN. Furthermore, the sample that was coated at 600 °C for 4 h was exposed to oxidation at 750–800 and 850 °C. It was found that the oxidation kinetics were 176 kJ/mol.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"32 32","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/mt-2024-0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this work was to examine how the microstructure and oxidation characteristics of Monel 400 Alloy were affected by the low-temperature aluminizing method. Monel 400 alloy was subjected to a low-temperature aluminizing procedure for 2 and 4 h at 600, 650, and 700 °C. Pure aluminum powder was used as the source of aluminum deposition to prepare the packs for the process. The activator and inert filler utilized were ammonium chloride (NH4Cl) and Al2O3 powder, respectively. The coating surfaces were characterized using energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM), as well as X-ray diffraction (XRD) analysis. It was discovered that the through-thickness variance in the layer microstructure varied between 4 and 30 µm, and that it increased with greater process temperatures and times. The coating layer hardness grew to 800 HV after the deposition process, whereas the matrix hardness remained at 200 HVN. Furthermore, the sample that was coated at 600 °C for 4 h was exposed to oxidation at 750–800 and 850 °C. It was found that the oxidation kinetics were 176 kJ/mol.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monel-400 合金上形成的镍铝基金属间化合物涂层的微观结构和氧化情况
这项工作的目的是研究 Monel 400 合金的微观结构和氧化特性如何受到低温镀铝方法的影响。Monel 400 合金在 600、650 和 700 °C 下分别进行了 2 和 4 小时的低温镀铝处理。纯铝粉被用作铝沉积源,为该工艺制备铝包。活化剂和惰性填料分别为氯化铵(NH4Cl)和 Al2O3 粉末。使用能量色散光谱(EDS)和扫描电子显微镜(SEM)以及 X 射线衍射(XRD)分析对涂层表面进行了表征。研究发现,涂层微观结构的厚度差异在 4 至 30 微米之间,并且随着加工温度和时间的增加而增大。沉积过程结束后,涂层硬度增加到 800 HV,而基体硬度则保持在 200 HVN。此外,在 600 °C 下镀膜 4 小时的样品在 750-800 和 850 °C 下受到氧化。结果发现,氧化动力学为 176 kJ/mol。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Self-Assembled of Multifunctional Fluorescent Copper-DNA Nanoflowers for Cell-Specific-Target MicroRNA Imaging. Iron Oxide Nanoparticles as Enhancers for Radiotherapy of Tumors. Transparent Biomaterial-Based Nonvolatile Bioelectronic Memory with Excellent Endurance. Antianemic Activity, Inhibition of Oxidative Stress, and Iron Supplementation in Mice with Iron-Deficiency Anemia through HG-Hawthorn Pectin-Iron(III) Complexes. Impact of Transportation on the Suitability of Cryopreserved Corneal Lenticule for Implantation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1