T. Yener, Alperen Refik Bilal Özsarı, K. M. Döleker, A. Erdoğan, S. Yener
{"title":"Microstructure and oxidation of a Ni–Al based intermetallic coating formation on a Monel-400 alloy","authors":"T. Yener, Alperen Refik Bilal Özsarı, K. M. Döleker, A. Erdoğan, S. Yener","doi":"10.1515/mt-2024-0038","DOIUrl":null,"url":null,"abstract":"\n The purpose of this work was to examine how the microstructure and oxidation characteristics of Monel 400 Alloy were affected by the low-temperature aluminizing method. Monel 400 alloy was subjected to a low-temperature aluminizing procedure for 2 and 4 h at 600, 650, and 700 °C. Pure aluminum powder was used as the source of aluminum deposition to prepare the packs for the process. The activator and inert filler utilized were ammonium chloride (NH4Cl) and Al2O3 powder, respectively. The coating surfaces were characterized using energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM), as well as X-ray diffraction (XRD) analysis. It was discovered that the through-thickness variance in the layer microstructure varied between 4 and 30 µm, and that it increased with greater process temperatures and times. The coating layer hardness grew to 800 HV after the deposition process, whereas the matrix hardness remained at 200 HVN. Furthermore, the sample that was coated at 600 °C for 4 h was exposed to oxidation at 750–800 and 850 °C. It was found that the oxidation kinetics were 176 kJ/mol.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"32 32","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/mt-2024-0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this work was to examine how the microstructure and oxidation characteristics of Monel 400 Alloy were affected by the low-temperature aluminizing method. Monel 400 alloy was subjected to a low-temperature aluminizing procedure for 2 and 4 h at 600, 650, and 700 °C. Pure aluminum powder was used as the source of aluminum deposition to prepare the packs for the process. The activator and inert filler utilized were ammonium chloride (NH4Cl) and Al2O3 powder, respectively. The coating surfaces were characterized using energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM), as well as X-ray diffraction (XRD) analysis. It was discovered that the through-thickness variance in the layer microstructure varied between 4 and 30 µm, and that it increased with greater process temperatures and times. The coating layer hardness grew to 800 HV after the deposition process, whereas the matrix hardness remained at 200 HVN. Furthermore, the sample that was coated at 600 °C for 4 h was exposed to oxidation at 750–800 and 850 °C. It was found that the oxidation kinetics were 176 kJ/mol.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.