{"title":"TCAD Modelling of Magnetic Hall Effect Sensors","authors":"Vartika Pandey, V. Marsic, P. Igic, S. Faramehr","doi":"10.3390/inventions9040072","DOIUrl":null,"url":null,"abstract":"In this paper, a gallium nitride (GaN) magnetic Hall effect current sensor is simulated in 2D and 3D using the TCAD Sentaurus simulation toolbox. The model takes into account the piezoelectric polarization effect and the Shockley–Read–Hall (SRH) and Fermi–Dirac statistics for all simulations. The galvanic transport model of TCAD Sentaurus is used to model the Lorentz force and magnetic behaviour of the sensor. The current difference, total current, and sensitivity simulations are systematically calibrated against experimental data. The sensor is optimised using varying geometrical and biasing parameters for various ambient temperatures. This unintentionally doped ungated current sensor has enhanced sensitivity to 16.5 %T−1 when reducing the spacing between the drains to 1 μm and increasing the source to drain spacing to 76 μm. It is demonstrated that the sensitivity degrades at 448 K (S = 12 %T−1), 373 K (S = 14.1 %T−1) compared to 300 K (S = 16.5 %T−1). The simulation results demonstrate a high sensitivity of GaN sensors at elevated temperatures, outperforming silicon counterparts.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inventions9040072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a gallium nitride (GaN) magnetic Hall effect current sensor is simulated in 2D and 3D using the TCAD Sentaurus simulation toolbox. The model takes into account the piezoelectric polarization effect and the Shockley–Read–Hall (SRH) and Fermi–Dirac statistics for all simulations. The galvanic transport model of TCAD Sentaurus is used to model the Lorentz force and magnetic behaviour of the sensor. The current difference, total current, and sensitivity simulations are systematically calibrated against experimental data. The sensor is optimised using varying geometrical and biasing parameters for various ambient temperatures. This unintentionally doped ungated current sensor has enhanced sensitivity to 16.5 %T−1 when reducing the spacing between the drains to 1 μm and increasing the source to drain spacing to 76 μm. It is demonstrated that the sensitivity degrades at 448 K (S = 12 %T−1), 373 K (S = 14.1 %T−1) compared to 300 K (S = 16.5 %T−1). The simulation results demonstrate a high sensitivity of GaN sensors at elevated temperatures, outperforming silicon counterparts.