Predicting Chronic Diseases Using Nonlinear Systems

Amarpreet Kaur, Geeta
{"title":"Predicting Chronic Diseases Using Nonlinear Systems","authors":"Amarpreet Kaur, Geeta","doi":"10.48175/ijarsct-19144","DOIUrl":null,"url":null,"abstract":"Healthcare heavily relies on advanced analytics to predict diseases and risks, with an abundance of health data being gathered through IoT and smart healthcare. Nonlinear systems and synchronization techniques play a crucial role in analyzing this data and predicting chronic diseases, such as cancer, cardiometabolic disease, and Parkinson’s disease. Using machine learning and computational intelligence, nonlinear analysis offers valuable insights into the enormous amounts of data collected in smart healthcare settings, enabling more accurate and efficient disease prediction. This chapter explores the various aspects of nonlinear systems and synchronization techniques in predictive analytics, providing a holistic view of their applications in chronic disease prediction","PeriodicalId":341984,"journal":{"name":"International Journal of Advanced Research in Science, Communication and Technology","volume":"30 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Science, Communication and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48175/ijarsct-19144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Healthcare heavily relies on advanced analytics to predict diseases and risks, with an abundance of health data being gathered through IoT and smart healthcare. Nonlinear systems and synchronization techniques play a crucial role in analyzing this data and predicting chronic diseases, such as cancer, cardiometabolic disease, and Parkinson’s disease. Using machine learning and computational intelligence, nonlinear analysis offers valuable insights into the enormous amounts of data collected in smart healthcare settings, enabling more accurate and efficient disease prediction. This chapter explores the various aspects of nonlinear systems and synchronization techniques in predictive analytics, providing a holistic view of their applications in chronic disease prediction
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用非线性系统预测慢性疾病
随着物联网和智能医疗收集到大量健康数据,医疗保健在很大程度上依赖于先进的分析技术来预测疾病和风险。非线性系统和同步技术在分析这些数据和预测癌症、心脏代谢疾病和帕金森病等慢性疾病方面发挥着至关重要的作用。利用机器学习和计算智能,非线性分析可为智能医疗环境中收集的海量数据提供有价值的见解,从而实现更准确、更高效的疾病预测。本章探讨了非线性系统和同步技术在预测分析中的各个方面,为它们在慢性疾病预测中的应用提供了一个全面的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contributing Factors to the Challenges of Patient Health Monitoring in Rural Healthcare Units: Basis for a Proposed Integrated Patient Management Portal A Comprehensive Review on Analytical Methods of Rifampicin A Review Article on Analytical Method on Vericiguat Development and Validation RP-HPLC Method for Estimation of Antidiabetic Drugs in Pharmaceutical Dosage Form Exploring Empathy in Management: Compassionate Leadership - The Ratan Tata Way
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1