{"title":"An event-triggered background-oriented schlieren technique combined with dynamic projection using dynamic mirror device","authors":"Zhen Lyu, Weiwei Cai, Yingzheng Liu","doi":"10.1088/1361-6501/ad6172","DOIUrl":null,"url":null,"abstract":"\n This paper reports a high-frequency event-triggered background-oriented schlieren (BOS) technique using a combination of an event-triggered camera and dynamic projection. To combine the advantages of continuous and pulsed illumination for the event-triggered camera, a novel background pattern is first developed to incorporate static and dynamic textures generated through projection utilizing a dynamic mirror device (DMD). Then, a specific post-processing algorithm is proposed to reconstruct frames with high time accuracy from event data. This technique allows for the continuous observation and capturing of flows at 4000 frames per second (FPS) with a very low cost, breaking through the short operating times of current high-frame-rate BOS. Moreover, the proposed BOS technique can visualize the flow in real-time with high temporal accuracy, a capability that is challenging to achieve with traditional BOS. To examine the proposed technique, BOS experiments were conducted on a sweeping jet actuator with various inlet pressure. The sweeping dynamics and the start-up process of the sweeping jet at various inlet pressure were visualized and investigated. It is found that the proposed event-triggered BOS can continuously visualize and record the jet flow at a resolution of 1280 × 720 pixels with an equivalent frame rate of up to 4000 FPS. The oscillation frequency of the sweeping jet was found to increase linearly with increasing inlet pressure. It reaches 117.2 Hz at an inlet pressure of 0.5 Mpa. Within the first ten milliseconds or so of start-up, the shape of the sweep was found to be symmetrical. Within the next hundred milliseconds, the jet commences to sweep and saturates. The start-up time of the sweeping jet was quantitatively measured and was observed to decrease with increased inlet pressures.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad6172","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports a high-frequency event-triggered background-oriented schlieren (BOS) technique using a combination of an event-triggered camera and dynamic projection. To combine the advantages of continuous and pulsed illumination for the event-triggered camera, a novel background pattern is first developed to incorporate static and dynamic textures generated through projection utilizing a dynamic mirror device (DMD). Then, a specific post-processing algorithm is proposed to reconstruct frames with high time accuracy from event data. This technique allows for the continuous observation and capturing of flows at 4000 frames per second (FPS) with a very low cost, breaking through the short operating times of current high-frame-rate BOS. Moreover, the proposed BOS technique can visualize the flow in real-time with high temporal accuracy, a capability that is challenging to achieve with traditional BOS. To examine the proposed technique, BOS experiments were conducted on a sweeping jet actuator with various inlet pressure. The sweeping dynamics and the start-up process of the sweeping jet at various inlet pressure were visualized and investigated. It is found that the proposed event-triggered BOS can continuously visualize and record the jet flow at a resolution of 1280 × 720 pixels with an equivalent frame rate of up to 4000 FPS. The oscillation frequency of the sweeping jet was found to increase linearly with increasing inlet pressure. It reaches 117.2 Hz at an inlet pressure of 0.5 Mpa. Within the first ten milliseconds or so of start-up, the shape of the sweep was found to be symmetrical. Within the next hundred milliseconds, the jet commences to sweep and saturates. The start-up time of the sweeping jet was quantitatively measured and was observed to decrease with increased inlet pressures.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.