Advanced Treatment Technologies for Pollutants Removal in Wastewater

M. Fawzy, H. Ahmed, Hossam F. Nassar
{"title":"Advanced Treatment Technologies for Pollutants Removal in Wastewater","authors":"M. Fawzy, H. Ahmed, Hossam F. Nassar","doi":"10.4028/p-0bwb2m","DOIUrl":null,"url":null,"abstract":"Conventional wastewater treatment technologies have been extensively studied for degrading organic matter, suspended solids, nutrient removal, and lowering microbial loads. They produce acceptable-quality effluent, but researchers have reported several limitations. Recently, advanced wastewater treatment technologies have preceded as an alternative to the degradation of recalcitrant wastes such as persistent organic compounds (POPs), pharmaceutically active compounds (PhACs), contaminants of emerging concern (CECs), and heavy metals (H.M). They can be physical, chemical, biological, or integration between one or more technologies. This is to meet the requirements for reuse for different purposes, minimize or prevent the negative impacts on the environment, and create new untraditional water resources to solve the water shortage problem. This article is a collected review of advanced wastewater treatment technologies. Also, the applications of these technologies with special concern for partially/hardly degradable pollutants from wastewater are indicated. They are eco-friendly, cost-effective, low-energy systems with a small footprint. Their selection depends on the characterization of wastewater, biodegradability, available footprint, quality of treated effluent required, cost, availability of funds, and personal skills.","PeriodicalId":17714,"journal":{"name":"Key Engineering Materials","volume":"13 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Key Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-0bwb2m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional wastewater treatment technologies have been extensively studied for degrading organic matter, suspended solids, nutrient removal, and lowering microbial loads. They produce acceptable-quality effluent, but researchers have reported several limitations. Recently, advanced wastewater treatment technologies have preceded as an alternative to the degradation of recalcitrant wastes such as persistent organic compounds (POPs), pharmaceutically active compounds (PhACs), contaminants of emerging concern (CECs), and heavy metals (H.M). They can be physical, chemical, biological, or integration between one or more technologies. This is to meet the requirements for reuse for different purposes, minimize or prevent the negative impacts on the environment, and create new untraditional water resources to solve the water shortage problem. This article is a collected review of advanced wastewater treatment technologies. Also, the applications of these technologies with special concern for partially/hardly degradable pollutants from wastewater are indicated. They are eco-friendly, cost-effective, low-energy systems with a small footprint. Their selection depends on the characterization of wastewater, biodegradability, available footprint, quality of treated effluent required, cost, availability of funds, and personal skills.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
去除废水中污染物的先进处理技术
传统的废水处理技术在降解有机物、悬浮固体、去除营养物和降低微生物负荷方面已得到广泛研究。这些技术能产生可接受质量的污水,但研究人员也发现了一些局限性。最近,先进的废水处理技术已成为降解持久性有机化合物 (POP)、药物活性化合物 (PHAC)、新出现的污染物 (CEC) 和重金属 (H.M) 等难降解废物的替代方法。它们可以是物理的、化学的、生物的,也可以是一种或多种技术的集成。这样做是为了满足不同用途的回用要求,最大限度地减少或防止对环境的负面影响,并创造新的非传统水资源来解决水资源短缺问题。本文收集整理了先进的废水处理技术。此外,还介绍了这些技术的应用,特别关注废水中的部分/难降解污染物。这些技术都是环保、经济、低能耗、占地面积小的系统。对这些技术的选择取决于废水的特性、生物降解性、可利用的占地面积、所需处理废水的质量、成本、可用资金和个人技能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Nanomaterials as Next-Gen Corrosion Inhibitors: A Comprehensive Review for Ceramic Wastewater Treatment Green Composite Concrete Incorporating with Non-Biodegradable Wastes Incorporation of Silicone Mold Residues Influence on Acoustic Properties of Subfloor Mortars Development of Hygrothermal Reference Year for Hygrothermal Simulation of Hygroscopic Building Construction for Guangzhou Experimental Study on Fracture Properties of Self-Compacting Concrete Containing Red Mud Waste and Different Steel Fiber Types
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1