Evaluating the Deicing Performance of Copper Sulfide Nanoparticle-Infused Transparent Photothermal Coatings on Glazing: An Integrative Experimental and Simulation Study
{"title":"Evaluating the Deicing Performance of Copper Sulfide Nanoparticle-Infused Transparent Photothermal Coatings on Glazing: An Integrative Experimental and Simulation Study","authors":"Rui Tang, Wei Jian, Denvid Lau","doi":"10.4028/p-ame4ns","DOIUrl":null,"url":null,"abstract":"This study presents an efficient approach to fabricating photothermal coatings using copper sulfide (CuS) nanoparticles for effective deicing on glass. The influence of nanoparticle shape on light absorption was economically evaluated using Finite Different Time Domain (FDTD) simulations, identifying CuS nanorods as the optimal choice in terms of light absorption and heat generation. Simulation results guided the fabrication of transparent photothermal coatings incorporating CuS nanorods and transparent acrylic resin paint. Deicing tests under 808 nm illumination demonstrated efficient active deicing potential of the developed coating covered with a 3mm-thick ice layer, raising the surface temperature from-20.0 °C to 42.5 °C within 400s. This combined simulation guidance and test validation approach introduces a cost-effective method for designing high-performance deicing coatings embedded with photothermal nanoparticles.","PeriodicalId":17714,"journal":{"name":"Key Engineering Materials","volume":"23 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Key Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-ame4ns","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an efficient approach to fabricating photothermal coatings using copper sulfide (CuS) nanoparticles for effective deicing on glass. The influence of nanoparticle shape on light absorption was economically evaluated using Finite Different Time Domain (FDTD) simulations, identifying CuS nanorods as the optimal choice in terms of light absorption and heat generation. Simulation results guided the fabrication of transparent photothermal coatings incorporating CuS nanorods and transparent acrylic resin paint. Deicing tests under 808 nm illumination demonstrated efficient active deicing potential of the developed coating covered with a 3mm-thick ice layer, raising the surface temperature from-20.0 °C to 42.5 °C within 400s. This combined simulation guidance and test validation approach introduces a cost-effective method for designing high-performance deicing coatings embedded with photothermal nanoparticles.