Geological interpretation of remote sensing data using the case of the Kolmozerskoye field in the Murmansk region

A.A. Kamaev, A.I. Manevich, V.V. Antoshin
{"title":"Geological interpretation of remote sensing data using the case of the Kolmozerskoye field in the Murmansk region","authors":"A.A. Kamaev, A.I. Manevich, V.V. Antoshin","doi":"10.30686/1609-9192-2024-3-122-125","DOIUrl":null,"url":null,"abstract":"This article discusses the need for the development of Russia's mineral and raw material base to support the country's high-tech economy. Special attention is given to prospecting and mining of strategically important types of raw materials, such as titanium, tungsten, lithium, and others. The importance of securing resources from domestic sources, minimizing dependence on imports, is emphasized. The article describes remote survey methods, specifically the use of Earth remote sensing data, i.e. the satellite images, for prospecting and assessment of potential deposits. An analysis of satellite data of the Murmansk Oblast is conducted to identify the potential mineralization nodes. The methods used include interpretation of images using geological indexes. With their help, zones of geological interest can be identified, which can later be used in a full range of geological exploration activities.","PeriodicalId":506182,"journal":{"name":"Mining Industry Journal (Gornay Promishlennost)","volume":"16 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining Industry Journal (Gornay Promishlennost)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30686/1609-9192-2024-3-122-125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article discusses the need for the development of Russia's mineral and raw material base to support the country's high-tech economy. Special attention is given to prospecting and mining of strategically important types of raw materials, such as titanium, tungsten, lithium, and others. The importance of securing resources from domestic sources, minimizing dependence on imports, is emphasized. The article describes remote survey methods, specifically the use of Earth remote sensing data, i.e. the satellite images, for prospecting and assessment of potential deposits. An analysis of satellite data of the Murmansk Oblast is conducted to identify the potential mineralization nodes. The methods used include interpretation of images using geological indexes. With their help, zones of geological interest can be identified, which can later be used in a full range of geological exploration activities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以摩尔曼斯克地区的科尔莫泽尔斯科耶油田为例,对遥感数据进行地质解读
本文讨论了俄罗斯发展矿产和原材料基地以支持国家高科技经济的必要性。文章特别关注具有重要战略意义的原材料的勘探和开采,如钛、钨、锂等。文章强调了确保国内资源的重要性,尽量减少对进口的依赖。文章介绍了遥感勘测方法,特别是利用地球遥感数据(即卫星图像)勘探和评估潜在矿藏的方法。文章对摩尔曼斯克州的卫星数据进行了分析,以确定潜在的矿化节点。使用的方法包括利用地质指数对图像进行解释。在它们的帮助下,可以确定具有地质意义的区域,这些区域随后可用于各种地质勘探活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A comparative strength analysis of diamond cable segments for stone cutting machines Prospects for increasing the mineral base of the non-ferrous metallurgy Production and utilization of magnesium oxide in the Russian Federation Perspectives of using satellite databases of greenhouse gas emissions in monitoring of mining facilities Issues related to implementation of big data analytical systems and other digitalization achievements to improve the business efficiency of mining companies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1