{"title":"Antibacterial Food Packaging Containing Stably Dispersed Cu Nanoparticles Synthesized by Novel Physical Vapor Deposition Process","authors":"Sanghoon Lee, Ho Seok Lee, Seok Keun Koh","doi":"10.4028/p-y3thxa","DOIUrl":null,"url":null,"abstract":"Polymeric materials were modified by nanoparticles on powder (NPP) facility in which metal nanoparticles (Cu, Cu/Zn alloy etc.) are formed on the surface of rotating carrier powder by using physical vapor deposition process untile the metal content reached 0.3wt.%. The polymer material with metal nanoparticles deposited on their surface through the NPP process was then added to the raw polymer material at a ratio of 1 to 9. The mixture of modified polymer powder and raw polymer powder were then processd into a film by conventional processes such as hot melting, extrusion, T-die, and antibacterial characteristics of the film were investigated. We ultimately manufactured antibacterial food package using the film and conducted preservation test for two weeks at room temperature. Since food package containing 0.03wt.% Cu nanoparticles showed over 99.9% bacteria reduction rate, it slowed down the progress of deterioration significantly compared to conventional packages. For safety evaluation, the amount of copper released out was analyzed and a cytotoxicity test was also conducted.","PeriodicalId":17714,"journal":{"name":"Key Engineering Materials","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Key Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-y3thxa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Polymeric materials were modified by nanoparticles on powder (NPP) facility in which metal nanoparticles (Cu, Cu/Zn alloy etc.) are formed on the surface of rotating carrier powder by using physical vapor deposition process untile the metal content reached 0.3wt.%. The polymer material with metal nanoparticles deposited on their surface through the NPP process was then added to the raw polymer material at a ratio of 1 to 9. The mixture of modified polymer powder and raw polymer powder were then processd into a film by conventional processes such as hot melting, extrusion, T-die, and antibacterial characteristics of the film were investigated. We ultimately manufactured antibacterial food package using the film and conducted preservation test for two weeks at room temperature. Since food package containing 0.03wt.% Cu nanoparticles showed over 99.9% bacteria reduction rate, it slowed down the progress of deterioration significantly compared to conventional packages. For safety evaluation, the amount of copper released out was analyzed and a cytotoxicity test was also conducted.