Bridging Pharma and Sustainability: Green Electrochemical Analysis of Antiparkinsonian Drug in Pharmaceuticals and Plasma, Aligned with United Nations Goals via the NQS Index
Marwa Marwa, Mohammad aboelhamd, R. H. Obaydo, Dania Nashed, C. Nessim
{"title":"Bridging Pharma and Sustainability: Green Electrochemical Analysis of Antiparkinsonian Drug in Pharmaceuticals and Plasma, Aligned with United Nations Goals via the NQS Index","authors":"Marwa Marwa, Mohammad aboelhamd, R. H. Obaydo, Dania Nashed, C. Nessim","doi":"10.1149/1945-7111/ad60f9","DOIUrl":null,"url":null,"abstract":"\n This study presents a sustainable electrochemical investigation of pramipexole (PRA) in pharmaceuticals and human plasma, using cyclic and differential pulse voltammetry. Key parameters, including potential range, buffer pH, accumulation period, and scan rate were optimized, establishing efficient voltammetric methods for PRA analysis. The analytical range was 0.60 – 12.00 μg/mL, with a detection limit of 0.14 μg/mL and a correlation coefficient of 0.9998. Recovery rates for PRA ranged from 98.60 ± 0.26% to 101.33 ± 0.38%, validating the methodology's applicability in human plasma with an average recovery of 99.25 ± 0.45%. The study highlights the environmental sustainability of the developed voltammetric electrode, evaluated through SWOT analysis, and assesses the greennees impact using tools like Complementary Green Analytical Procedure Index (ComplexGAPI), Analytical greenness (AGREE) and Analytical greenness for sample preparation (AGREEprep). Significantly, this work aligns with numerous United Nations Sustainable Development Goals (UN-SDGs), specifically goals 3, 4, 5, 7, 9, 11, 12, 13, 14, 15, and 17, illustrating our commitment to sustainable pharmaceutical research. The sustainability of the method was further quantified using the newly introduced Need, Quality, Sustainability (NQS) index, demonstrating significant alignment with sustainable analytical practices.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad60f9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a sustainable electrochemical investigation of pramipexole (PRA) in pharmaceuticals and human plasma, using cyclic and differential pulse voltammetry. Key parameters, including potential range, buffer pH, accumulation period, and scan rate were optimized, establishing efficient voltammetric methods for PRA analysis. The analytical range was 0.60 – 12.00 μg/mL, with a detection limit of 0.14 μg/mL and a correlation coefficient of 0.9998. Recovery rates for PRA ranged from 98.60 ± 0.26% to 101.33 ± 0.38%, validating the methodology's applicability in human plasma with an average recovery of 99.25 ± 0.45%. The study highlights the environmental sustainability of the developed voltammetric electrode, evaluated through SWOT analysis, and assesses the greennees impact using tools like Complementary Green Analytical Procedure Index (ComplexGAPI), Analytical greenness (AGREE) and Analytical greenness for sample preparation (AGREEprep). Significantly, this work aligns with numerous United Nations Sustainable Development Goals (UN-SDGs), specifically goals 3, 4, 5, 7, 9, 11, 12, 13, 14, 15, and 17, illustrating our commitment to sustainable pharmaceutical research. The sustainability of the method was further quantified using the newly introduced Need, Quality, Sustainability (NQS) index, demonstrating significant alignment with sustainable analytical practices.