Bayesian Federated Learning with Hamiltonian Monte Carlo: Algorithm and Theory

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY Journal of Computational and Graphical Statistics Pub Date : 2024-07-09 DOI:10.1080/10618600.2024.2380051
Jiajun Liang, Qian Zhang, Wei Deng, Qifan Song, Guang Lin
{"title":"Bayesian Federated Learning with Hamiltonian Monte Carlo: Algorithm and Theory","authors":"Jiajun Liang, Qian Zhang, Wei Deng, Qifan Song, Guang Lin","doi":"10.1080/10618600.2024.2380051","DOIUrl":null,"url":null,"abstract":"This work introduces a novel and efficient Bayesian federated learning algorithm, namely, the Federated Averaging stochastic Hamiltonian Monte Carlo (FA-HMC), for parameter estimation and uncertainty quantification. We establish rigorous convergence guarantees of FA-HMC on non-iid distributed data sets, under the strong convexity and Hessian smoothness assumptions. Our analysis investigates the effects of parameter space dimension, noise on gradients and momentum, and the frequency of communication (between the central node and local nodes) on the convergence and communication costs of FA-HMC. Beyond that, we establish the tightness of our analysis by showing that the convergence rate cannot be improved even for continuous FA-HMC process. Moreover, extensive empirical studies demonstrate that FA-HMC outperforms the existing Federated Averaging-Langevin Monte Carlo (FA-LD) algorithm.","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Graphical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10618600.2024.2380051","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces a novel and efficient Bayesian federated learning algorithm, namely, the Federated Averaging stochastic Hamiltonian Monte Carlo (FA-HMC), for parameter estimation and uncertainty quantification. We establish rigorous convergence guarantees of FA-HMC on non-iid distributed data sets, under the strong convexity and Hessian smoothness assumptions. Our analysis investigates the effects of parameter space dimension, noise on gradients and momentum, and the frequency of communication (between the central node and local nodes) on the convergence and communication costs of FA-HMC. Beyond that, we establish the tightness of our analysis by showing that the convergence rate cannot be improved even for continuous FA-HMC process. Moreover, extensive empirical studies demonstrate that FA-HMC outperforms the existing Federated Averaging-Langevin Monte Carlo (FA-LD) algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
哈密尔顿蒙特卡洛贝叶斯联合学习:算法与理论
本研究介绍了一种新颖高效的贝叶斯联合学习算法,即用于参数估计和不确定性量化的联合平均随机哈密尔顿蒙特卡罗算法(FA-HMC)。在强凸性和黑森平滑性假设下,我们建立了 FA-HMC 在非 iid 分布数据集上的严格收敛保证。我们的分析研究了参数空间维度、梯度和动量上的噪声以及通信频率(中央节点和本地节点之间)对 FA-HMC 的收敛性和通信成本的影响。此外,我们还证明,即使是连续的 FA-HMC 过程,收敛速率也无法提高,从而确立了我们分析的严密性。此外,大量实证研究证明,FA-HMC 优于现有的联邦平均-朗之文蒙特卡洛(FA-LD)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
8.30%
发文量
153
审稿时长
>12 weeks
期刊介绍: The Journal of Computational and Graphical Statistics (JCGS) presents the very latest techniques on improving and extending the use of computational and graphical methods in statistics and data analysis. Established in 1992, this journal contains cutting-edge research, data, surveys, and more on numerical graphical displays and methods, and perception. Articles are written for readers who have a strong background in statistics but are not necessarily experts in computing. Published in March, June, September, and December.
期刊最新文献
High-Dimensional Block Diagonal Covariance Structure Detection Using Singular Vectors Optimal Subsampling for Data Streams with Measurement Constrained Categorical Responses Multi-task Learning for Gaussian Graphical Regressions with High Dimensional Covariates Latent Markov time-interaction processes Multi-label Random Subspace Ensemble Classification1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1