Kevin Singh Gill, David R Smith, Semin Joung, B. Geiger, G. McKee, Jefferey Zimmerman, Ryan N Coffee, A. Jalalvand, E. Kolemen
{"title":"Real-time confinement regime detection in fusion plasmas with convolutional neural networks and high-bandwidth edge fluctuation measurements","authors":"Kevin Singh Gill, David R Smith, Semin Joung, B. Geiger, G. McKee, Jefferey Zimmerman, Ryan N Coffee, A. Jalalvand, E. Kolemen","doi":"10.1088/2632-2153/ad605e","DOIUrl":null,"url":null,"abstract":"\n A real-time detection of the plasma confinement regime can enable new advanced plasma control capabilities for both the access to and sustainment of enhanced confinement regimes in fusion devices. For example, a real-time indication of the confinement regime can facilitate transition to the high-performing wide pedestal quiescent H-mode, or avoid unwanted transitions to lower confinement regimes that may induce plasma termination. To demonstrate real-time confinement regime detection, we use the 2D beam emission spectroscopy (BES) diagnostic system to capture localized density fluctuations of long wavelength turbulent modes in the edge region at a 1 MHz sampling rate. BES data from 330 discharges in either L-mode, H-mode, Quiescent H (QH)-mode, or wide-pedestal QH-mode was collected from the DIII-D tokamak and curated to develop a high-quality database to train a deep-learning classification model for real-time confinement detection. We utilize the 6x8 spatial configuration with a time window of 1024 $\\mu$s and recast the input to obtain spectral-like features via FFT preprocessing. We employ a shallow 3D convolutional neural network for the multivariate time-series classification task and utilize a softmax in the final dense layer to retrieve a probability distribution over the different confinement regimes. Our model classifies the global confinement state on 44 unseen test discharges with an average $F_1$ score of 0.94, using only $\\sim$1 millisecond snippets of BES data at a time. This activity demonstrates the feasibility for real-time data analysis of fluctuation diagnostics in future devices such as ITER, where the need for reliable and advanced plasma control is urgent.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"119 45","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad605e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A real-time detection of the plasma confinement regime can enable new advanced plasma control capabilities for both the access to and sustainment of enhanced confinement regimes in fusion devices. For example, a real-time indication of the confinement regime can facilitate transition to the high-performing wide pedestal quiescent H-mode, or avoid unwanted transitions to lower confinement regimes that may induce plasma termination. To demonstrate real-time confinement regime detection, we use the 2D beam emission spectroscopy (BES) diagnostic system to capture localized density fluctuations of long wavelength turbulent modes in the edge region at a 1 MHz sampling rate. BES data from 330 discharges in either L-mode, H-mode, Quiescent H (QH)-mode, or wide-pedestal QH-mode was collected from the DIII-D tokamak and curated to develop a high-quality database to train a deep-learning classification model for real-time confinement detection. We utilize the 6x8 spatial configuration with a time window of 1024 $\mu$s and recast the input to obtain spectral-like features via FFT preprocessing. We employ a shallow 3D convolutional neural network for the multivariate time-series classification task and utilize a softmax in the final dense layer to retrieve a probability distribution over the different confinement regimes. Our model classifies the global confinement state on 44 unseen test discharges with an average $F_1$ score of 0.94, using only $\sim$1 millisecond snippets of BES data at a time. This activity demonstrates the feasibility for real-time data analysis of fluctuation diagnostics in future devices such as ITER, where the need for reliable and advanced plasma control is urgent.