Samsudin Anis, Krisna Tri Romadhoni, Deni Fajar Fitriyana, Aldias Bahatmaka, Hendrix Noviyanto Firmansyah, Natalino Fonseca Da Silva Guterres
{"title":"The Effect of Perforated Plate Geometry on Thermofluid Characteristics of Briquette Drying Oven: A 3D Computational Fluid Dynamics (CFD) Study","authors":"Samsudin Anis, Krisna Tri Romadhoni, Deni Fajar Fitriyana, Aldias Bahatmaka, Hendrix Noviyanto Firmansyah, Natalino Fonseca Da Silva Guterres","doi":"10.37934/cfdl.16.11.111132","DOIUrl":null,"url":null,"abstract":"The process of drying briquettes in an oven is very costly due to the amount of fuel, labor, and drying time required. Furthermore, inadequate air circulation also results in an uneven and ineffective drying process for briquettes. The performance of the briquette drying oven can be improved by changing the geometry of the perforated plate in the oven to optimize the air distribution. This research process was conducted through Computational Fluid Dynamics (CFD) simulations using Ansys Fluid Flow (Fluent) software by testing three different perforated plate geometries in the oven to determine their effect on the air distribution that occurred in the oven. The research findings indicate that the temperature, velocity, pressure, and airflow pattern of the air are all considerably impacted by the incorporation of perforated plates into the first, second, and third geometries of the oven. When compared to the original geometry, the average air temperature in ovens using the first, second, and third geometries increased by 6.86%, 7.38%, and 9.15%, respectively. Average air velocity increased by 226.04%, 235.77%, and 431.60% in ovens with the first, second, and third geometries. However, the air pressure in ovens with the first, second, and third geometries decreased by 11.05%, 8.62%, and 10.66%. The use of perforated plates on the right, back, and left sides in an oven with the third geometry is the best geometry produced in this research. This happens because this oven produces the most even airflow pattern in the oven compared to other geometries. In addition, the oven with the third geometry has the highest average temperature and average air velocity, with a lower average air pressure compared to the other geometries. Consequently, drying is more effective and takes less time.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CFD Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/cfdl.16.11.111132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The process of drying briquettes in an oven is very costly due to the amount of fuel, labor, and drying time required. Furthermore, inadequate air circulation also results in an uneven and ineffective drying process for briquettes. The performance of the briquette drying oven can be improved by changing the geometry of the perforated plate in the oven to optimize the air distribution. This research process was conducted through Computational Fluid Dynamics (CFD) simulations using Ansys Fluid Flow (Fluent) software by testing three different perforated plate geometries in the oven to determine their effect on the air distribution that occurred in the oven. The research findings indicate that the temperature, velocity, pressure, and airflow pattern of the air are all considerably impacted by the incorporation of perforated plates into the first, second, and third geometries of the oven. When compared to the original geometry, the average air temperature in ovens using the first, second, and third geometries increased by 6.86%, 7.38%, and 9.15%, respectively. Average air velocity increased by 226.04%, 235.77%, and 431.60% in ovens with the first, second, and third geometries. However, the air pressure in ovens with the first, second, and third geometries decreased by 11.05%, 8.62%, and 10.66%. The use of perforated plates on the right, back, and left sides in an oven with the third geometry is the best geometry produced in this research. This happens because this oven produces the most even airflow pattern in the oven compared to other geometries. In addition, the oven with the third geometry has the highest average temperature and average air velocity, with a lower average air pressure compared to the other geometries. Consequently, drying is more effective and takes less time.