Hybrid Nanofluid Flow over a Shrinking Darcy-Forchheimer Porous Medium with Shape Factor and Solar Radiation: A Stability Analysis

Q2 Mathematics CFD Letters Pub Date : 2024-07-05 DOI:10.37934/cfdl.16.11.6081
Shahirah Abu Bakar, Nurul Syuhada Ismail, Norihan Md. Arifin
{"title":"Hybrid Nanofluid Flow over a Shrinking Darcy-Forchheimer Porous Medium with Shape Factor and Solar Radiation: A Stability Analysis","authors":"Shahirah Abu Bakar, Nurul Syuhada Ismail, Norihan Md. Arifin","doi":"10.37934/cfdl.16.11.6081","DOIUrl":null,"url":null,"abstract":"This research aimed to develop a numerical solution to analyze the effects of solar radiation and nanoparticle shape factors on the flow of a hybrid nanofluid past a shrinking Darcy-Forchheimer porous medium. The base fluid chosen for this study is water (H2O), and the hybrid nanofluid consists of nanoparticles of silver (Ag) and titanium dioxide (TiO2) in four different shapes: bricks, cylinders, platelets, and blades. To account for solar radiation, the energy model incorporated a radiative heat flux, while the momentum problem considers the influence of a magnetic field. The application of an appropriate similarity transformation method converts the partial differential equations (PDEs) model into a system of nonlinear ordinary differential equations (ODEs). The mathematical model is solved using the shooting technique method and the bvp4c solver. The obtained results, along with the effects of the nanoparticle shape factor, solar radiation parameter, shrinking parameter, Darcy-Forchheimer number, and nanofluid volume fraction, are visually presented through figures and tables. It is worth noting that, in our numerical results, we observed the presence of dual solutions when λ < 0. Our findings indicate that the thermal transmittance increases with an increase in the nanoparticle shape factor and solar radiative parameter. Additionally, we observed an escalation in the velocity distribution in relation to the shrinking parameter and nanofluid volume fraction. Before reaching the two solutions, a flow stability analysis revealed that the first branch appears to be the most stable. Overall, these findings provide valuable insights into the behaviour of hybrid nanofluid flow in the presence of solar radiation and porous media.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CFD Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/cfdl.16.11.6081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This research aimed to develop a numerical solution to analyze the effects of solar radiation and nanoparticle shape factors on the flow of a hybrid nanofluid past a shrinking Darcy-Forchheimer porous medium. The base fluid chosen for this study is water (H2O), and the hybrid nanofluid consists of nanoparticles of silver (Ag) and titanium dioxide (TiO2) in four different shapes: bricks, cylinders, platelets, and blades. To account for solar radiation, the energy model incorporated a radiative heat flux, while the momentum problem considers the influence of a magnetic field. The application of an appropriate similarity transformation method converts the partial differential equations (PDEs) model into a system of nonlinear ordinary differential equations (ODEs). The mathematical model is solved using the shooting technique method and the bvp4c solver. The obtained results, along with the effects of the nanoparticle shape factor, solar radiation parameter, shrinking parameter, Darcy-Forchheimer number, and nanofluid volume fraction, are visually presented through figures and tables. It is worth noting that, in our numerical results, we observed the presence of dual solutions when λ < 0. Our findings indicate that the thermal transmittance increases with an increase in the nanoparticle shape factor and solar radiative parameter. Additionally, we observed an escalation in the velocity distribution in relation to the shrinking parameter and nanofluid volume fraction. Before reaching the two solutions, a flow stability analysis revealed that the first branch appears to be the most stable. Overall, these findings provide valuable insights into the behaviour of hybrid nanofluid flow in the presence of solar radiation and porous media.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有形状因子和太阳辐射的收缩达西-福克海默多孔介质上的混合纳米流体流动:稳定性分析
本研究旨在开发一种数值解决方案,以分析太阳辐射和纳米粒子形状因素对混合纳米流体流过收缩的达西-福克海默多孔介质的影响。本研究选择的基础流体是水(H2O),混合纳米流体由四种不同形状的纳米银(Ag)和二氧化钛(TiO2)颗粒组成:砖块、圆柱、平板和叶片。为了考虑太阳辐射,能量模型包含了辐射热通量,而动量问题则考虑了磁场的影响。应用适当的相似性转换方法将偏微分方程模型转换为非线性常微分方程系统。数学模型使用射击技术方法和 bvp4c 求解器求解。获得的结果以及纳米粒子形状系数、太阳辐射参数、收缩参数、达西-福克海默数和纳米流体体积分数的影响,通过图和表直观地呈现出来。值得注意的是,在我们的数值结果中,当 λ < 0 时,我们观察到了双重解的存在。我们的研究结果表明,随着纳米粒子形状系数和太阳辐射参数的增加,热透射率也在增加。此外,我们还观察到速度分布与收缩参数和纳米流体体积分数有关。在得出两种解决方案之前,流动稳定性分析表明第一个分支似乎是最稳定的。总之,这些发现为我们了解混合纳米流体在太阳辐射和多孔介质作用下的流动行为提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CFD Letters
CFD Letters Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
3.40
自引率
0.00%
发文量
76
期刊最新文献
Numerical Investigation of Thermal Performance for Turbulent Water Flow through Dimpled Pipe MHD Stagnation Point Flow of Micropolar Fluid over a Stretching/ Shrinking Sheet Unsteady MHD Walter’s-B Viscoelastic Flow Past a Vertical Porous Plate Effects of Activation Energy and Diffusion Thermo an Unsteady MHD Maxwell Fluid Flow over a Porous Vertical Stretched Sheet in the Presence of Thermophoresis and Brownian Motion Effect of Inlet Pressure on the Polyurethane Spray Nozzle for Soil Cracking Improvement: Simulations using CFD Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1