Numerical Optimization for Aerodynamic Performance of Nose Cone of FSAE Vehicle through CFD

Q2 Mathematics CFD Letters Pub Date : 2024-07-05 DOI:10.37934/cfdl.15.11.161171
Amol Dhumal, Nitin Ambhore, Pradip Tamkhade, Atharv Marne, Nihal Muzawar
{"title":"Numerical Optimization for Aerodynamic Performance of Nose Cone of FSAE Vehicle through CFD","authors":"Amol Dhumal, Nitin Ambhore, Pradip Tamkhade, Atharv Marne, Nihal Muzawar","doi":"10.37934/cfdl.15.11.161171","DOIUrl":null,"url":null,"abstract":"This paper presents the optimization and aerodynamic performance of a Formula SAE vehicle nose cone. The purpose of the study is to minimize drag while simultaneously enhancing downforce to improve traction and acceleration of the vehicle. Numerous CAD models of the nose cone were developed, taking into account factors such as chassis dimensions, ground clearance, and Formula SAE rulebook constraints. Computational Fluid Dynamics (CFD) analysis is carried out in ANSYS 2021 Fluent module. The fluid domain was created and meshed using tetrahedral cells, and the flow field was predicted using the Realizable k-ε turbulence model. The simulation results revealed essential information including drag and lift coefficients, as well as pressure and velocity contours. An in-depth analysis of lift and drag coefficients guided the optimization of the nose cone design. The study ultimately identified a nose cone design that yielded the most favorable drag coefficient and is found in the range between 0.2-0.3. The study also observed that the down force is increased by 27%. This design proved highly effective in reducing the vehicle's drag and sufficient downforce to enhance acceleration.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CFD Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/cfdl.15.11.161171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the optimization and aerodynamic performance of a Formula SAE vehicle nose cone. The purpose of the study is to minimize drag while simultaneously enhancing downforce to improve traction and acceleration of the vehicle. Numerous CAD models of the nose cone were developed, taking into account factors such as chassis dimensions, ground clearance, and Formula SAE rulebook constraints. Computational Fluid Dynamics (CFD) analysis is carried out in ANSYS 2021 Fluent module. The fluid domain was created and meshed using tetrahedral cells, and the flow field was predicted using the Realizable k-ε turbulence model. The simulation results revealed essential information including drag and lift coefficients, as well as pressure and velocity contours. An in-depth analysis of lift and drag coefficients guided the optimization of the nose cone design. The study ultimately identified a nose cone design that yielded the most favorable drag coefficient and is found in the range between 0.2-0.3. The study also observed that the down force is increased by 27%. This design proved highly effective in reducing the vehicle's drag and sufficient downforce to enhance acceleration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 CFD 数值优化 FSAE 赛车鼻锥的空气动力性能
本文介绍了 SAE 级方程式赛车鼻锥的优化和空气动力性能。研究的目的是最大限度地减少阻力,同时增强下压力以提高车辆的牵引力和加速度。考虑到底盘尺寸、离地间隙和 SAE 级方程式赛车规则限制等因素,开发了大量鼻锥 CAD 模型。计算流体动力学 (CFD) 分析在 ANSYS 2021 Fluent 模块中进行。使用四面体单元创建流体域并划分网格,使用可实现的 k-ε 湍流模型预测流场。模拟结果显示了包括阻力和升力系数以及压力和速度等值线在内的重要信息。对升力和阻力系数的深入分析为优化鼻锥设计提供了指导。研究最终确定了一种能产生最有利阻力系数的鼻锥设计,其阻力系数范围在 0.2-0.3 之间。研究还发现,下压力增加了 27%。事实证明,这种设计能非常有效地减少车辆的阻力和足够的下压力,从而提高加速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CFD Letters
CFD Letters Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
3.40
自引率
0.00%
发文量
76
期刊最新文献
Numerical Investigation of Thermal Performance for Turbulent Water Flow through Dimpled Pipe MHD Stagnation Point Flow of Micropolar Fluid over a Stretching/ Shrinking Sheet Unsteady MHD Walter’s-B Viscoelastic Flow Past a Vertical Porous Plate Effects of Activation Energy and Diffusion Thermo an Unsteady MHD Maxwell Fluid Flow over a Porous Vertical Stretched Sheet in the Presence of Thermophoresis and Brownian Motion Effect of Inlet Pressure on the Polyurethane Spray Nozzle for Soil Cracking Improvement: Simulations using CFD Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1