{"title":"Application of the Mask R-CNN model to cold front identification in Eurasia","authors":"Yujing Qin, Shuya He, Chuhan Lu, Liuguan Ding","doi":"10.1002/joc.8549","DOIUrl":null,"url":null,"abstract":"<p>Cold fronts often bring catastrophic weather events, which are exacerbated under global warming. Thus, the automatic and objective identification of cold fronts will be helpful for accurate forecasting and comprehensive analysis of cold fronts. Recently, machine learning methods have been applied to meteorological study. In this study, a cold front identification method based on the deep learning model Mask R-CNN is proposed to automatically identify cold fronts from massive data. The Mask R-CNN method shows high accuracy after the comparison with traditional methods and is effective for identifying the cold fronts in both continuous time and extreme precipitation events. Based on the obtained cold-front samples, we conduct some statistical analysis. The results show that the frequency of cold front is unevenly distributed over Eurasia, with the highest in the Daxing'anling region and the mid-latitude storm axis, especially in winter. The method and results presented in this study may have some implications for the application of deep learning models in weather system identification.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 11","pages":"3766-3777"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8549","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cold fronts often bring catastrophic weather events, which are exacerbated under global warming. Thus, the automatic and objective identification of cold fronts will be helpful for accurate forecasting and comprehensive analysis of cold fronts. Recently, machine learning methods have been applied to meteorological study. In this study, a cold front identification method based on the deep learning model Mask R-CNN is proposed to automatically identify cold fronts from massive data. The Mask R-CNN method shows high accuracy after the comparison with traditional methods and is effective for identifying the cold fronts in both continuous time and extreme precipitation events. Based on the obtained cold-front samples, we conduct some statistical analysis. The results show that the frequency of cold front is unevenly distributed over Eurasia, with the highest in the Daxing'anling region and the mid-latitude storm axis, especially in winter. The method and results presented in this study may have some implications for the application of deep learning models in weather system identification.
期刊介绍:
The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions