{"title":"Physically based modelling of orientation deviation effect on mechanical behavior for dual-phase single-crystal superalloy","authors":"Qian Yin, Ming Li, Zhixun Wen, Xiufang Gong, Jundong Wang, Fei Li, Wei Sun, Zhufeng Yue","doi":"10.1111/ffe.14376","DOIUrl":null,"url":null,"abstract":"<p>This work systematically investigates the orientation deviation effect on the elastoplastic deformation of a dual-phase, nickel-based single-crystal superalloy through a combined experimental study and crystal plasticity finite element modelling method (CPFEM). Physically based, dual-phase microstructural model was developed based on scanning electron microscopy (SEM), which was implemented by finite element (FE) modelling using a representative volume element (RVE) with periodic boundary conditions. An extended equivalent yield criterion coupled with CPFEM was adopted to describe the non-uniform yield behavior induced by octahedral and cubic slip systems. The predicted results have shown that both the bulk behavior and localized stress–strain nature are orientation deviation dependent and that the first Euler angle plays a more important role in elastoplastic behavior than the second Euler angle. This study has thus advanced the basic understanding of the relationship between orientation deviation and the bulk deformation behavior of the dual-phase nickel-based single crystal.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 10","pages":"3510-3528"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14376","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work systematically investigates the orientation deviation effect on the elastoplastic deformation of a dual-phase, nickel-based single-crystal superalloy through a combined experimental study and crystal plasticity finite element modelling method (CPFEM). Physically based, dual-phase microstructural model was developed based on scanning electron microscopy (SEM), which was implemented by finite element (FE) modelling using a representative volume element (RVE) with periodic boundary conditions. An extended equivalent yield criterion coupled with CPFEM was adopted to describe the non-uniform yield behavior induced by octahedral and cubic slip systems. The predicted results have shown that both the bulk behavior and localized stress–strain nature are orientation deviation dependent and that the first Euler angle plays a more important role in elastoplastic behavior than the second Euler angle. This study has thus advanced the basic understanding of the relationship between orientation deviation and the bulk deformation behavior of the dual-phase nickel-based single crystal.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.