Could hydrogen gas be produced using human cells?

IF 2.9 4区 环境科学与生态学 Q3 ENERGY & FUELS Clean Energy Pub Date : 2024-07-04 DOI:10.1093/ce/zkae034
T. Catal
{"title":"Could hydrogen gas be produced using human cells?","authors":"T. Catal","doi":"10.1093/ce/zkae034","DOIUrl":null,"url":null,"abstract":"\n Although fossil fuels are widely used to meet energy needs, intensive research has been carried out in recent years on hydrogen production from renewable sources due to their decrease over time and environmental pollution concerns. Biofuel cell technology is one of the promising current technologies. It has been proven that various microorganisms produce energy through their natural metabolism, and that energy production is produced in biofuel cells by exoelectrogenic microorganisms that can transfer electrons to an electrode surface. Although it has been stated that employing human cells to generate energy is feasible, it is unknown whether doing so would enable the production of hydrogen. Within the scope of this perspective article, the issue of hydrogen production in bioelectrolysis cells using human cells will be discussed for the first time. Optimizing hydrogen production in bioelectrolysis cells using human cells is important in terms of contributing to hydrogen technologies. Within the scope of the article, promising human cell lines for hydrogen production are emphasized and hydrogen production potentials in bioelectrolysis cells using these cell lines are discussed. In conclusion, some human cells can be used for hydrogen gas production in bioelectrolysis cells due to their bioelectrochemical and metabolic properties.","PeriodicalId":36703,"journal":{"name":"Clean Energy","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ce/zkae034","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Although fossil fuels are widely used to meet energy needs, intensive research has been carried out in recent years on hydrogen production from renewable sources due to their decrease over time and environmental pollution concerns. Biofuel cell technology is one of the promising current technologies. It has been proven that various microorganisms produce energy through their natural metabolism, and that energy production is produced in biofuel cells by exoelectrogenic microorganisms that can transfer electrons to an electrode surface. Although it has been stated that employing human cells to generate energy is feasible, it is unknown whether doing so would enable the production of hydrogen. Within the scope of this perspective article, the issue of hydrogen production in bioelectrolysis cells using human cells will be discussed for the first time. Optimizing hydrogen production in bioelectrolysis cells using human cells is important in terms of contributing to hydrogen technologies. Within the scope of the article, promising human cell lines for hydrogen production are emphasized and hydrogen production potentials in bioelectrolysis cells using these cell lines are discussed. In conclusion, some human cells can be used for hydrogen gas production in bioelectrolysis cells due to their bioelectrochemical and metabolic properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
能否利用人体细胞生产氢气?
尽管化石燃料被广泛应用于满足能源需求,但由于可再生资源随时间推移而减少,以及对环境污染的担忧,近年来人们对利用可再生资源制氢进行了深入研究。生物燃料电池技术是目前前景看好的技术之一。事实证明,各种微生物通过其自然新陈代谢产生能量,而生物燃料电池中的能量生产是由可将电子传递到电极表面的外生微生物产生的。虽然有人说利用人体细胞产生能量是可行的,但这样做是否能产生氢气还不得而知。在本视角文章的范围内,将首次讨论利用人体细胞在生物电解池中制氢的问题。优化使用人体细胞的生物电解池的制氢过程对于氢技术的发展非常重要。在文章范围内,强调了有希望制氢的人类细胞系,并讨论了使用这些细胞系的生物电解细胞的制氢潜力。总之,一些人类细胞由于其生物电化学和新陈代谢特性,可用于在生物电解细胞中生产氢气。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clean Energy
Clean Energy Environmental Science-Management, Monitoring, Policy and Law
CiteScore
4.00
自引率
13.00%
发文量
55
期刊最新文献
Scenario of solar energy and policies in India Enhancing Fault Clearing Algorithm for Renewable Energy-based Distribution Systems Using Artificial Neural Networks A numerical investigation on the effect of altering compression ratio, injection timing, and injection duration on the performance of a diesel engine fuelled with diesel-biodiesel-butanol blend Improved Sliding Mode Control for Tracking Global Maximum Power of Triple Series Parallel Ladder Photovoltaic Array under Uneven Shadowing Expert perspective on technological choice for cooking energy transition in Nepal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1