Numerical Simulation Study of the Effect of Outlet on the Axial Vortex Separator

IF 17.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-03 DOI:10.47176/jafm.17.9.2461
H. Lou, †. X.Zhang, X. Liu, Y. Wang, R. Liao
{"title":"Numerical Simulation Study of the Effect of Outlet on the Axial Vortex Separator","authors":"H. Lou, †. X.Zhang, X. Liu, Y. Wang, R. Liao","doi":"10.47176/jafm.17.9.2461","DOIUrl":null,"url":null,"abstract":"This study utilizes numerical simulations and dimensional analysis to investigate the impact of the two-phase outlet on flow field characteristics and separation efficiency of the separator. The study revealed a boundary layer separation at the water outlet, which was subsequently addressed to reduce energy losses in the separator. Dimensional analysis considered the influences of operational, structural, and physical parameters on the separator's performance. With other structural parameters held constant, separation efficiency is directly proportional to the ratio of inlet and oil-outlet diameter. Additionally, the separation efficiency is also associated with Re and the ratio of the inlet to the water-outlet diameter. When the diameter of the water outlet is constant, the axial vortex separator achieves optimal separation when the ratio of inlet and water-outlet diameter is 0.563, with a maximum separation efficiency of 97.00%. The optimal separation efficiency is reached at Re=22,908 under various operational conditions. Separation efficiency increases with water content, peaking at an inlet water content of 0.9 across different structural parameters. Separation efficiency shows an increase followed by a decrease with the rise in inlet flow rate(vi), achieving the best performance at vi=3m/s for the different separator structures studied.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" 27","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.9.2461","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study utilizes numerical simulations and dimensional analysis to investigate the impact of the two-phase outlet on flow field characteristics and separation efficiency of the separator. The study revealed a boundary layer separation at the water outlet, which was subsequently addressed to reduce energy losses in the separator. Dimensional analysis considered the influences of operational, structural, and physical parameters on the separator's performance. With other structural parameters held constant, separation efficiency is directly proportional to the ratio of inlet and oil-outlet diameter. Additionally, the separation efficiency is also associated with Re and the ratio of the inlet to the water-outlet diameter. When the diameter of the water outlet is constant, the axial vortex separator achieves optimal separation when the ratio of inlet and water-outlet diameter is 0.563, with a maximum separation efficiency of 97.00%. The optimal separation efficiency is reached at Re=22,908 under various operational conditions. Separation efficiency increases with water content, peaking at an inlet water content of 0.9 across different structural parameters. Separation efficiency shows an increase followed by a decrease with the rise in inlet flow rate(vi), achieving the best performance at vi=3m/s for the different separator structures studied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
出口对轴向涡流分离器影响的数值模拟研究
本研究利用数值模拟和尺寸分析来研究两相出口对分离器流场特性和分离效率的影响。研究发现,水出口处存在边界层分离现象,随后解决了这一问题,以减少分离器中的能量损失。尺寸分析考虑了操作、结构和物理参数对分离器性能的影响。在其他结构参数保持不变的情况下,分离效率与进油口和出油口直径之比成正比。此外,分离效率还与 Re 值和入口与出水口直径之比有关。当出水口直径不变时,当进水口与出水口直径之比为 0.563 时,轴向漩涡分离器可达到最佳分离效果,最大分离效率为 97.00%。在不同的运行条件下,Re=22,908 时可达到最佳分离效率。分离效率随含水量的增加而增加,在不同的结构参数下,在入口含水量为 0.9 时达到峰值。分离效率随入口流速(vi)的增加而增加,随后降低,在 vi=3m/s 时,所研究的不同分离器结构达到最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Manifestations of Boron-Alkali Metal and Boron-Alkaline-Earth Metal Romances Issue Publication Information Issue Editorial Masthead Mapping and Rewiring Biology via Proximity Induction Thermodynamic Principles Behind Mechanisms and Reactivities: Hydrogen Atom Abstraction and Related Radical Reactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1