{"title":"Surface Crack Detection on Selective Laser Melting Printed Inconel 718 Using a Laser Generated Ultrasound Technique and Phase Space Reconstruction","authors":"Huadong Yang, Rongxin Song, Geng Ma, Jianhua Wang","doi":"10.1088/1361-6501/ad5ea7","DOIUrl":null,"url":null,"abstract":"\n In the field of metallic additive manufacturing, Selective Laser Melting (SLM) has become a predominant technology due to its advantages of short production cycles, high precision, and low cost. It is frequently employed in the production of complex parts. This paper proposes the use of a scanning laser line source, in conjunction with the singular value decomposition method, to reconstruct phase space and identify surface cracks in SLM specimens. The scanning laser line source addresses the limitations of a single line source, which is often unable to accurately detect tiny cracks. By comparing experimental and simulation data, the results demonstrate that the scanning laser line source can effectively compensate for some of the detection deficiencies of a single line source.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"108 s417","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad5ea7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of metallic additive manufacturing, Selective Laser Melting (SLM) has become a predominant technology due to its advantages of short production cycles, high precision, and low cost. It is frequently employed in the production of complex parts. This paper proposes the use of a scanning laser line source, in conjunction with the singular value decomposition method, to reconstruct phase space and identify surface cracks in SLM specimens. The scanning laser line source addresses the limitations of a single line source, which is often unable to accurately detect tiny cracks. By comparing experimental and simulation data, the results demonstrate that the scanning laser line source can effectively compensate for some of the detection deficiencies of a single line source.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.