{"title":"Electrophysical Microwave Installation for Heat Treatment of Animal Slaughter Waste","authors":"E. Voronov","doi":"10.21603/2074-9414-2024-2-2511","DOIUrl":null,"url":null,"abstract":"Every day, the Russian Federation processes 126.3 tons of animal slaughter waste into animal feed. With an installation capacity of 35 kg/h, the required quantity is 7000 units. As a rule, the devices are energy-intensive. The problem is to reduce the operating costs of heat treatment of raw materials while maintaining the feed quality. The article introduces a new installation powered by an electrically driven resonator with rationalized operating modes. \nThe research featured mucous by-products that require thermal treatment to neutralize the smell and disinfect the raw material. The authors investigated the dynamics of heating and used the data obtained to develop a digital installation model and test the electrodynamics in the resonator. After that, they rationalized the operating modes, i.e., corona discharge, electric field, screen efficiency, generator power, installation performance, and energy costs. \nThe complex action of electromagnetic radiation provided a continuous combined heat treatment, disinfection, and odor neutralization with reduced operating costs. The electrical resonator was coaxially located in the shielding and contained a coronating electrode, electric bactericidal UV gas discharge lamps, knives, screws, and emitters from air-cooled magnetrons. \nThe annular volume between the resonator and the coat excited the traveling wave by electromagnetic radiation through the perforation. Its average perimeter was a multiple of half the wavelength. The heat treatment with disinfection and fat rendering required an intrinsic quality factor of 8000, a generator power of 4.4 kW, a productivity of 35–40 kg/h, and energy costs of 0.25–0.28 kWh/kg. When the electric field was 5 kV/cm and the corona discharge was 9.79 kV/cm, the corona of bactericidal lamps provided the required ozone concentration and the bacterial contamination fell down to an acceptable level. \nThe new installation with an electrical resonator reduced operating costs for heat treatment of animal slaughter waste and maintained the high-quality of the resulting feed products.","PeriodicalId":12335,"journal":{"name":"Food Processing: Techniques and Technology","volume":"100 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Processing: Techniques and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21603/2074-9414-2024-2-2511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0
Abstract
Every day, the Russian Federation processes 126.3 tons of animal slaughter waste into animal feed. With an installation capacity of 35 kg/h, the required quantity is 7000 units. As a rule, the devices are energy-intensive. The problem is to reduce the operating costs of heat treatment of raw materials while maintaining the feed quality. The article introduces a new installation powered by an electrically driven resonator with rationalized operating modes.
The research featured mucous by-products that require thermal treatment to neutralize the smell and disinfect the raw material. The authors investigated the dynamics of heating and used the data obtained to develop a digital installation model and test the electrodynamics in the resonator. After that, they rationalized the operating modes, i.e., corona discharge, electric field, screen efficiency, generator power, installation performance, and energy costs.
The complex action of electromagnetic radiation provided a continuous combined heat treatment, disinfection, and odor neutralization with reduced operating costs. The electrical resonator was coaxially located in the shielding and contained a coronating electrode, electric bactericidal UV gas discharge lamps, knives, screws, and emitters from air-cooled magnetrons.
The annular volume between the resonator and the coat excited the traveling wave by electromagnetic radiation through the perforation. Its average perimeter was a multiple of half the wavelength. The heat treatment with disinfection and fat rendering required an intrinsic quality factor of 8000, a generator power of 4.4 kW, a productivity of 35–40 kg/h, and energy costs of 0.25–0.28 kWh/kg. When the electric field was 5 kV/cm and the corona discharge was 9.79 kV/cm, the corona of bactericidal lamps provided the required ozone concentration and the bacterial contamination fell down to an acceptable level.
The new installation with an electrical resonator reduced operating costs for heat treatment of animal slaughter waste and maintained the high-quality of the resulting feed products.