Hardware Implementation of Next Generation Reservoir Computing with RRAM-Based Hybrid Digital-Analog System

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) Pub Date : 2024-07-03 DOI:10.1002/aisy.202400098
Danian Dong, Woyu Zhang, Yuanlu Xie, Jinshan Yue, Kuan Ren, Hongjian Huang, Xu Zheng, Wen Xuan Sun, Jin Ru Lai, Shaoyang Fan, Hongzhou Wang, Zhaoan Yu, Zhihong Yao, Xiaoxin Xu, Dashan Shang, Ming Liu
{"title":"Hardware Implementation of Next Generation Reservoir Computing with RRAM-Based Hybrid Digital-Analog System","authors":"Danian Dong,&nbsp;Woyu Zhang,&nbsp;Yuanlu Xie,&nbsp;Jinshan Yue,&nbsp;Kuan Ren,&nbsp;Hongjian Huang,&nbsp;Xu Zheng,&nbsp;Wen Xuan Sun,&nbsp;Jin Ru Lai,&nbsp;Shaoyang Fan,&nbsp;Hongzhou Wang,&nbsp;Zhaoan Yu,&nbsp;Zhihong Yao,&nbsp;Xiaoxin Xu,&nbsp;Dashan Shang,&nbsp;Ming Liu","doi":"10.1002/aisy.202400098","DOIUrl":null,"url":null,"abstract":"<p>Reservoir computing (RC) possesses a simple architecture and high energy efficiency for time-series data analysis through machine learning algorithms. To date, RC has evolved into several innovative variants. The next generation reservoir computing (NGRC) variant, founded on nonlinear vector autoregression (NVAR) distinguishes itself due to its fewer hyperparameters and independence from physical random connection matrices, while yielding comparable results. However, NGRC networks struggle with massive Kronecker product calculations and matrix-vector multiplications within the read out layer, leading to substantial efficiency challenges for traditional von Neumann architectures. In this work, a hybrid digital-analog hardware system tailored for NGRC is developed. The digital part is a Kronecker product calculation unit with data filtering, which realizes transformation of nonlinear vector of the input linear vector. For matrix-vector multiplication, a computing-in-memory architecture based on resistive random access memory array offers an energy-efficient hardware solution, which markedly reduces data transfer and greatly improve computational parallelism and energy efficiency. The predictive capabilities of this hybrid NGRC system are validated through the Lorenz63 model, achieving a normalized root mean square error (NRMSE) of 0.00098 and an energy efficiency of 19.42TOPS W<sup>−1</sup>.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400098","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Reservoir computing (RC) possesses a simple architecture and high energy efficiency for time-series data analysis through machine learning algorithms. To date, RC has evolved into several innovative variants. The next generation reservoir computing (NGRC) variant, founded on nonlinear vector autoregression (NVAR) distinguishes itself due to its fewer hyperparameters and independence from physical random connection matrices, while yielding comparable results. However, NGRC networks struggle with massive Kronecker product calculations and matrix-vector multiplications within the read out layer, leading to substantial efficiency challenges for traditional von Neumann architectures. In this work, a hybrid digital-analog hardware system tailored for NGRC is developed. The digital part is a Kronecker product calculation unit with data filtering, which realizes transformation of nonlinear vector of the input linear vector. For matrix-vector multiplication, a computing-in-memory architecture based on resistive random access memory array offers an energy-efficient hardware solution, which markedly reduces data transfer and greatly improve computational parallelism and energy efficiency. The predictive capabilities of this hybrid NGRC system are validated through the Lorenz63 model, achieving a normalized root mean square error (NRMSE) of 0.00098 and an energy efficiency of 19.42TOPS W−1.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于 RRAM 的数模混合系统实现下一代储层计算的硬件实现
储层计算(RC)架构简单、能效高,可通过机器学习算法进行时间序列数据分析。迄今为止,储层计算已发展出多种创新变体。下一代水库计算(NGRC)变体建立在非线性向量自回归(NVAR)的基础上,由于超参数较少,且独立于物理随机连接矩阵,因而与众不同,同时还能产生类似的结果。然而,NGRC 网络在读出层中需要进行大量的 Kronecker 乘积计算和矩阵向量乘法,这给传统的冯-诺依曼架构带来了巨大的效率挑战。在这项工作中,开发了一种专为 NGRC 量身定制的数模混合硬件系统。数字部分是一个带有数据滤波功能的克朗克乘积计算单元,它实现了输入线性矢量的非线性矢量转换。对于矩阵-矢量乘法,基于电阻随机存取存储器阵列的内存计算架构提供了一种高能效的硬件解决方案,显著减少了数据传输,大大提高了计算的并行性和能效。通过 Lorenz63 模型验证了这种混合 NGRC 系统的预测能力,其归一化均方根误差(NRMSE)为 0.00098,能效为 19.42TOPS W-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Masthead Reconstructing Soft Robotic Touch via In-Finger Vision A Cable-Actuated Soft Manipulator for Dexterous Grasping Based on Deep Reinforcement Learning Liquid Metal Chameleon Tongues: Modulating Surface Tension and Phase Transition to Enable Bioinspired Soft Actuators Reprogrammable, Recyclable Origami Robots Controlled by Magnetic Fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1