An optimization scheme for vehicular edge computing based on Lyapunov function and deep reinforcement learning

IF 1.5 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IET Communications Pub Date : 2024-07-02 DOI:10.1049/cmu2.12800
Lin Zhu, Long Tan, Bingxian Li, Huizi Tian
{"title":"An optimization scheme for vehicular edge computing based on Lyapunov function and deep reinforcement learning","authors":"Lin Zhu,&nbsp;Long Tan,&nbsp;Bingxian Li,&nbsp;Huizi Tian","doi":"10.1049/cmu2.12800","DOIUrl":null,"url":null,"abstract":"<p>Traditional vehicular edge computing research usually ignores the mobility of vehicles, the dynamic variability of the vehicular edge environment, the large amount of real-time data required for vehicular edge computing, the limited resources of edge servers, and collaboration issues. In response to these challenges, this article proposes a vehicular edge computing optimization scheme based on the Lyapunov function and Deep Reinforcement Learning. In this solution, this article uses Digital Twin technology (DT) to simulate the vehicular edge environment. The edge server DT is used to simulate the vehicular edge environment under the edge server, and the base station DT is used to simulate the entire vehicular edge system environment. Based on the real-time data obtained from DT simulation, this paper defines the Lyapunov function to simplify the migration cost of vehicle tasks between servers into a multi-objective dynamic optimization problem. It solves the problem by applying the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. Experimental results show that compared with other algorithms, this scheme can effectively optimize the allocation and collaboration of vehicular edge computing resources and reduce the delay and energy consumption caused by vehicle task processing.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 15","pages":"908-924"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12800","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12800","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional vehicular edge computing research usually ignores the mobility of vehicles, the dynamic variability of the vehicular edge environment, the large amount of real-time data required for vehicular edge computing, the limited resources of edge servers, and collaboration issues. In response to these challenges, this article proposes a vehicular edge computing optimization scheme based on the Lyapunov function and Deep Reinforcement Learning. In this solution, this article uses Digital Twin technology (DT) to simulate the vehicular edge environment. The edge server DT is used to simulate the vehicular edge environment under the edge server, and the base station DT is used to simulate the entire vehicular edge system environment. Based on the real-time data obtained from DT simulation, this paper defines the Lyapunov function to simplify the migration cost of vehicle tasks between servers into a multi-objective dynamic optimization problem. It solves the problem by applying the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. Experimental results show that compared with other algorithms, this scheme can effectively optimize the allocation and collaboration of vehicular edge computing resources and reduce the delay and energy consumption caused by vehicle task processing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 Lyapunov 函数和深度强化学习的车载边缘计算优化方案
传统的车载边缘计算研究通常忽略了车辆的移动性、车载边缘环境的动态多变性、车载边缘计算所需的大量实时数据、边缘服务器的有限资源以及协作问题。针对这些挑战,本文提出了一种基于 Lyapunov 函数和深度强化学习的车载边缘计算优化方案。在该方案中,本文使用数字孪生技术(DT)来模拟车辆边缘环境。边缘服务器 DT 用于模拟边缘服务器下的车辆边缘环境,基站 DT 用于模拟整个车辆边缘系统环境。本文基于 DT 仿真获得的实时数据,定义了 Lyapunov 函数,将服务器之间的车辆任务迁移成本简化为多目标动态优化问题。本文采用双延迟深度确定性策略梯度(TD3)算法来解决该问题。实验结果表明,与其他算法相比,该方案能有效优化车载边缘计算资源的分配和协作,减少车载任务处理带来的延迟和能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Communications
IET Communications 工程技术-工程:电子与电气
CiteScore
4.30
自引率
6.20%
发文量
220
审稿时长
5.9 months
期刊介绍: IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth. Topics include, but are not limited to: Coding and Communication Theory; Modulation and Signal Design; Wired, Wireless and Optical Communication; Communication System Special Issues. Current Call for Papers: Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf
期刊最新文献
A deep learning-based approach for pseudo-satellite positioning Analysis of interference effect in VL-NOMA network considering signal power parameters performance An innovative model for an enhanced dual intrusion detection system using LZ-JC-DBSCAN, EPRC-RPOA and EG-GELU-GRU A high-precision timing and frequency synchronization algorithm for multi-h CPM signals Dual-user joint sensing and communications with time-divisioned bi-static radar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1