Polycrystalline silicon, a molecular dynamics study: Part I --- Deposition and growth modes

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Modelling and Simulation in Materials Science and Engineering Pub Date : 2024-07-02 DOI:10.1088/1361-651x/ad5dd2
Mikael Santonen, A. Lahti, Z. Rad, M. Miettinen, Masoud ebrahimzadeh, J. Lehtiö, P. Laukkanen, M. Punkkinen, P. Paturi, K. Kokko, Antti Kuronen, Wei Li, L. Vitos, Katja Parkkinen, Markus Eklund
{"title":"Polycrystalline silicon, a molecular dynamics study: Part I --- Deposition and growth modes","authors":"Mikael Santonen, A. Lahti, Z. Rad, M. Miettinen, Masoud ebrahimzadeh, J. Lehtiö, P. Laukkanen, M. Punkkinen, P. Paturi, K. Kokko, Antti Kuronen, Wei Li, L. Vitos, Katja Parkkinen, Markus Eklund","doi":"10.1088/1361-651x/ad5dd2","DOIUrl":null,"url":null,"abstract":"\n Polycrystalline silicon (poly-Si) significantly expands the properties of the ICT miracle material, silicon (Si). Depending on the grain size and shape as well as the grain boundary structure, the properties of poly-Si exceed what single crystal (c-Si) and amorphous (a-Si) silicon can offer, especially for radio frequency (RF) applications in microelectronics. Due to its wide range of applications and, on the one hand, its theoretically and technologically challenging microstructure, poly-Si research is the most timely. In this report, we describe how we simulate and analyse the phenomena and mechanisms that control the effect of poly-Si deposition parameters on the structure of the deposited poly-Si films using classical molecular dynamics simulations. The grain shape and size, degree of crystallinity, grain boundary structure and the stress of poly-Si films are determined depending on the growth temperature, temperature distribution in the growing film, deposition flux, flux variation and the energy transferred to the film surface due to the deposition flux. The main results include: (i) the dependence of the crystallinity profile of the deposited poly-Si films on the stress, temperature and the different parameters of the deposition flux, (ii) growth modes at the early stages of the deposition, (iii) interaction and stability of seed crystallites at the early stage of the deposition of poly-Si films and the transition from the isolated crystallite growth to the poly-Si growth, (iv) interplay of the temperature, crystallinity, crystal shape and heath conductivity of different Si phases, (v) four different stages of crystallite growth are described: nucleation, growth, disappearance and retardation.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad5dd2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polycrystalline silicon (poly-Si) significantly expands the properties of the ICT miracle material, silicon (Si). Depending on the grain size and shape as well as the grain boundary structure, the properties of poly-Si exceed what single crystal (c-Si) and amorphous (a-Si) silicon can offer, especially for radio frequency (RF) applications in microelectronics. Due to its wide range of applications and, on the one hand, its theoretically and technologically challenging microstructure, poly-Si research is the most timely. In this report, we describe how we simulate and analyse the phenomena and mechanisms that control the effect of poly-Si deposition parameters on the structure of the deposited poly-Si films using classical molecular dynamics simulations. The grain shape and size, degree of crystallinity, grain boundary structure and the stress of poly-Si films are determined depending on the growth temperature, temperature distribution in the growing film, deposition flux, flux variation and the energy transferred to the film surface due to the deposition flux. The main results include: (i) the dependence of the crystallinity profile of the deposited poly-Si films on the stress, temperature and the different parameters of the deposition flux, (ii) growth modes at the early stages of the deposition, (iii) interaction and stability of seed crystallites at the early stage of the deposition of poly-Si films and the transition from the isolated crystallite growth to the poly-Si growth, (iv) interplay of the temperature, crystallinity, crystal shape and heath conductivity of different Si phases, (v) four different stages of crystallite growth are described: nucleation, growth, disappearance and retardation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多晶硅,分子动力学研究:第一部分--沉积和生长模式
多晶硅(Poly-Si)极大地扩展了信息和通信技术奇迹材料硅(Si)的性能。根据晶粒大小和形状以及晶界结构的不同,多晶硅的性能超过了单晶硅(c-Si)和非晶硅(a-Si),尤其是在微电子领域的射频(RF)应用方面。一方面,多晶硅的应用范围广泛,另一方面,其微观结构在理论和技术上又极具挑战性,因此,多晶硅的研究恰逢其时。在本报告中,我们介绍了如何利用经典分子动力学模拟来模拟和分析控制多晶硅沉积参数对沉积多晶硅薄膜结构影响的现象和机制。多晶硅薄膜的晶粒形状和尺寸、结晶度、晶界结构和应力取决于生长温度、生长薄膜的温度分布、沉积通量、通量变化以及沉积通量传递到薄膜表面的能量。主要结果包括(i) 沉积多晶硅薄膜的结晶度曲线对应力、温度和沉积流量不同参数的依赖性,(ii) 沉积早期阶段的生长模式,(iii) 多晶硅薄膜沉积早期阶段籽晶的相互作用和稳定性,以及从孤立晶粒生长到多晶硅生长的过渡,(iv) 不同硅相的温度、结晶度、晶体形状和热导率的相互作用,(v) 描述了晶粒生长的四个不同阶段:(v) 描述了晶体生长的四个不同阶段:成核、生长、消失和延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
96
审稿时长
1.7 months
期刊介绍: Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation. Subject coverage: Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.
期刊最新文献
Plastic deformation mechanism of γ phase Fe–Cr alloy revealed by molecular dynamics simulations A nonlinear phase-field model of corrosion with charging kinetics of electric double layer Effect of helium bubbles on the mobility of edge dislocations in copper Mechanical-electric-magnetic-thermal coupled enriched finite element method for magneto-electro-elastic structures Molecular dynamics simulations of high-energy radiation damage in hcp-titanium considering electronic effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1