Mitigative Effect of Graphene Oxide Nanoparticles in Maintaining Gut–Liver Homeostasis against Alcohol Injury

IF 17.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-02 DOI:10.3390/gastroent15030042
Hiral Aghara, Prashsti Chadha, Palash Mandal
{"title":"Mitigative Effect of Graphene Oxide Nanoparticles in Maintaining Gut–Liver Homeostasis against Alcohol Injury","authors":"Hiral Aghara, Prashsti Chadha, Palash Mandal","doi":"10.3390/gastroent15030042","DOIUrl":null,"url":null,"abstract":"Alcoholic liver disease (ALD) develops when the immunotolerant environment of the liver is compromised due to excessive alcohol consumption. ALD progression involves variations in the expressions of multiple genes, resulting in liver inflammation and the development of a leaky gut. It is still unclear which molecular mechanism is involved in ALD progression, and due to that, there are currently no FDA-approved drugs available for its treatment. In this study, the protective effects of graphene oxide (GO) nanoparticles were investigated against ethanol-induced damage in the gut–liver axis in in vitro. GO was synthesized using a modified Hummer’s method, and characterization was performed. Given the general concerns regarding nanoparticle toxicity, assessments of cell viability, lipid accumulation, DNA damage, cell death, and the generation of reactive oxygen species (ROS) were conducted using various techniques. Furthermore, the gene expressions of pro- and anti-inflammatory cytokines were determined using RT-qPCR. The findings reveal that GO promoted cell viability even against ethanol treatment. Additionally, lipid accumulation significantly decreased when cells were treated with GO alongside ethanol compared to ethanol treatment alone, with similar trends observed for other assays. A gene expression analysis indicated that GO treatment reduced the expression of proinflammatory cytokines while enhancing the expression of antioxidant genes. Moreover, GO treatment led to improvements in gut integrity and a reduction in proinflammatory cytokines in colon cells damaged by ethanol. These findings suggest that GO holds promise as a drug carrier, exhibiting no observed toxic effects. By shedding light on the protective effects of GO against ethanol-induced damage, this study contributes to the burgeoning field of nanoparticle-mediated therapy for ALD.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"24 3","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/gastroent15030042","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Alcoholic liver disease (ALD) develops when the immunotolerant environment of the liver is compromised due to excessive alcohol consumption. ALD progression involves variations in the expressions of multiple genes, resulting in liver inflammation and the development of a leaky gut. It is still unclear which molecular mechanism is involved in ALD progression, and due to that, there are currently no FDA-approved drugs available for its treatment. In this study, the protective effects of graphene oxide (GO) nanoparticles were investigated against ethanol-induced damage in the gut–liver axis in in vitro. GO was synthesized using a modified Hummer’s method, and characterization was performed. Given the general concerns regarding nanoparticle toxicity, assessments of cell viability, lipid accumulation, DNA damage, cell death, and the generation of reactive oxygen species (ROS) were conducted using various techniques. Furthermore, the gene expressions of pro- and anti-inflammatory cytokines were determined using RT-qPCR. The findings reveal that GO promoted cell viability even against ethanol treatment. Additionally, lipid accumulation significantly decreased when cells were treated with GO alongside ethanol compared to ethanol treatment alone, with similar trends observed for other assays. A gene expression analysis indicated that GO treatment reduced the expression of proinflammatory cytokines while enhancing the expression of antioxidant genes. Moreover, GO treatment led to improvements in gut integrity and a reduction in proinflammatory cytokines in colon cells damaged by ethanol. These findings suggest that GO holds promise as a drug carrier, exhibiting no observed toxic effects. By shedding light on the protective effects of GO against ethanol-induced damage, this study contributes to the burgeoning field of nanoparticle-mediated therapy for ALD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化石墨烯纳米颗粒在维持肠道-肝脏平衡以对抗酒精损伤中的缓解作用
酒精性肝病(ALD)是由于过量饮酒导致肝脏的免疫耐受环境受损而引起的。ALD 的发展涉及多个基因的表达变化,导致肝脏炎症和肠道渗漏。目前尚不清楚ALD进展的分子机制,因此目前还没有经美国食品及药物管理局批准的药物可用于治疗。本研究在体外研究了氧化石墨烯(GO)纳米颗粒对乙醇诱导的肠肝轴损伤的保护作用。GO 采用改进的 Hummer 方法合成,并进行了表征。鉴于人们普遍关注纳米粒子的毒性,研究人员使用各种技术对细胞活力、脂质积累、DNA 损伤、细胞死亡和活性氧(ROS)的生成进行了评估。此外,还使用 RT-qPCR 测定了促炎和抗炎细胞因子的基因表达。研究结果表明,即使在乙醇处理的情况下,GO 也能促进细胞活力。此外,与单独用乙醇处理相比,用 GO 与乙醇同时处理细胞时,脂质积累明显减少,其他检测方法也观察到类似的趋势。基因表达分析表明,GO 处理减少了促炎细胞因子的表达,同时增强了抗氧化基因的表达。此外,GO 处理还能改善肠道完整性,并减少受乙醇损伤的结肠细胞中的促炎细胞因子。这些研究结果表明,GO 有望成为一种药物载体,而且不会产生任何毒性作用。通过阐明 GO 对乙醇引起的损伤的保护作用,这项研究为纳米粒子介导的 ALD 治疗这一新兴领域做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Programmable Aptamer-Controlled Fibrinogenesis Using Dynamic DNA Networks and Synthetic Transcription Machineries Chalcogenoviologen-Based Surface and Interface Chemistry for Optoelectronic Applications: From Molecular Design to Functional Devices. Issue Publication Information Issue Editorial Masthead Regulating Lanthanide Single-Molecule Magnets with Coordination Geometry and Organometallic Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1