Martin Alfredo Terrazas Silva , David Alberto Salas de León , Maria Luisa Machain Castillo , María Adela Monreal Gómez
{"title":"The connection of the Costa Rica Coastal Current with the West Mexican Current in the Gulf of Tehuantepec","authors":"Martin Alfredo Terrazas Silva , David Alberto Salas de León , Maria Luisa Machain Castillo , María Adela Monreal Gómez","doi":"10.1016/j.csr.2024.105294","DOIUrl":null,"url":null,"abstract":"<div><p>The interconnections of some ocean currents in the Eastern Tropical Pacific are still a mystery to the scientific community. In the Mexican Pacific, the West Mexican Current (WMC) and the Costa Rica Coastal Current (CRCC) are two flows that are typically considered independent; however, some evidence of a subsurface connection when the Tehuantepec Bowl (TB) moves westward suggests otherwise. With the Hybrid Coordinated Ocean Model (HYCOM), we obtained a 19 years-run in a domain encompassing the Eastern Tropical Pacific Ocean. The numerical results were validated qualitatively and quantitatively by comparing them with remote and direct observations. We found a generally good agreement between the model results and those observations. To analyze the model results, we defined four transects perpendicularly to the coast, and surface and subsurface layers; in the long-term mean, the CRCC is disconnected from the WMC, in both layers. However, during the seasonal cycle, we found a close relationship between the general structures in thermocline topography and surface and subsurface large-scale circulation. The model results confirmed that the interconnection between the CRCC and the WMC depends on the dynamics of the TB, that on its seasonal migration moves westward, allowing the CRCC to travel along the coast further west than the Gulf of Tehuantepec (GT) and to connect with the WMC during spring at a subsurface level below the thermocline.</p></div>","PeriodicalId":50618,"journal":{"name":"Continental Shelf Research","volume":"279 ","pages":"Article 105294"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continental Shelf Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278434324001249","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The interconnections of some ocean currents in the Eastern Tropical Pacific are still a mystery to the scientific community. In the Mexican Pacific, the West Mexican Current (WMC) and the Costa Rica Coastal Current (CRCC) are two flows that are typically considered independent; however, some evidence of a subsurface connection when the Tehuantepec Bowl (TB) moves westward suggests otherwise. With the Hybrid Coordinated Ocean Model (HYCOM), we obtained a 19 years-run in a domain encompassing the Eastern Tropical Pacific Ocean. The numerical results were validated qualitatively and quantitatively by comparing them with remote and direct observations. We found a generally good agreement between the model results and those observations. To analyze the model results, we defined four transects perpendicularly to the coast, and surface and subsurface layers; in the long-term mean, the CRCC is disconnected from the WMC, in both layers. However, during the seasonal cycle, we found a close relationship between the general structures in thermocline topography and surface and subsurface large-scale circulation. The model results confirmed that the interconnection between the CRCC and the WMC depends on the dynamics of the TB, that on its seasonal migration moves westward, allowing the CRCC to travel along the coast further west than the Gulf of Tehuantepec (GT) and to connect with the WMC during spring at a subsurface level below the thermocline.
期刊介绍:
Continental Shelf Research publishes articles dealing with the biological, chemical, geological and physical oceanography of the shallow marine environment, from coastal and estuarine waters out to the shelf break. The continental shelf is a critical environment within the land-ocean continuum, and many processes, functions and problems in the continental shelf are driven by terrestrial inputs transported through the rivers and estuaries to the coastal and continental shelf areas. Manuscripts that deal with these topics must make a clear link to the continental shelf. Examples of research areas include:
Physical sedimentology and geomorphology
Geochemistry of the coastal ocean (inorganic and organic)
Marine environment and anthropogenic effects
Interaction of physical dynamics with natural and manmade shoreline features
Benthic, phytoplankton and zooplankton ecology
Coastal water and sediment quality, and ecosystem health
Benthic-pelagic coupling (physical and biogeochemical)
Interactions between physical dynamics (waves, currents, mixing, etc.) and biogeochemical cycles
Estuarine, coastal and shelf sea modelling and process studies.