{"title":"Impact of Zeeman and hyperfine interactions on the magnetic properties of paramagnetic metal Ions: I. Local interactions of the electron spin","authors":"Yu.E. Kandrashkin","doi":"10.1016/j.jmr.2024.107728","DOIUrl":null,"url":null,"abstract":"<div><p>The anisotropic Zeeman interaction of an ion, and the strong hyperfine interaction with its own nucleus, can significantly influence its interactions with the local environment. These effects, including the reduction of the effective magnetic moment of the electron spin and the phase memory decay rate, are studied theoretically. Analytical expressions describing the mean magnetic moment of the electron spin are obtained. The results of the theoretical analysis and accompanying numerical computations show that the strong hyperfine interaction of the ion reduces its effective magnetic moment. In particular, a 7% reduction is found for the scandium endofullerene Sc<sub>2</sub>@C<sub>80</sub>(CH<sub>2</sub>Ph) under conditions typical of an X-band EPR experiment.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"365 ","pages":"Article 107728"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724001125","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The anisotropic Zeeman interaction of an ion, and the strong hyperfine interaction with its own nucleus, can significantly influence its interactions with the local environment. These effects, including the reduction of the effective magnetic moment of the electron spin and the phase memory decay rate, are studied theoretically. Analytical expressions describing the mean magnetic moment of the electron spin are obtained. The results of the theoretical analysis and accompanying numerical computations show that the strong hyperfine interaction of the ion reduces its effective magnetic moment. In particular, a 7% reduction is found for the scandium endofullerene Sc2@C80(CH2Ph) under conditions typical of an X-band EPR experiment.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.