Qinyao Zhu , Xin Huang , Botian Deng , Lili Guan , Hui Zhou , Binhe Shi , Junhua Liu , Xiaojiao Shan , Xiaobin Fang , Fengtao Xu , Huan Li , Xiyang Liu , Xiushan Yin , Luo Zhang
{"title":"Tumor micro-environment induced TRAIL secretion from engineered macrophages for anti-tumor therapy","authors":"Qinyao Zhu , Xin Huang , Botian Deng , Lili Guan , Hui Zhou , Binhe Shi , Junhua Liu , Xiaojiao Shan , Xiaobin Fang , Fengtao Xu , Huan Li , Xiyang Liu , Xiushan Yin , Luo Zhang","doi":"10.1016/j.cellimm.2024.104857","DOIUrl":null,"url":null,"abstract":"<div><p>The high plasticity and long-term persistency make macrophages excellent vehicles for delivering anti-tumor cytokines. Macrophage delivery of chemokines and cytokines shows potential in tumor therapy. TRAIL, a promising anti-tumor cytokine, induces apoptosis in tumor cells with low toxicity to normal cells. However, its off-target toxicity and limited stability have limited its clinical progress. Here, we engineered macrophages with Mono-TRAIL and Tri-TRAIL and found that Tri-TRAIL had higher cytotoxic activity against tumor cells than Mono-TRAIL in vitro. To target the tumor microenvironment (TME), we generated macrophages secreting trimeric TRAIL (Tri-TRAIL-iM) induced by the TME-specific promoter Arg1. The Tri-TRAIL-iM cells displayed high specific activatable activity in cell-based co-culture assay and tumor-baring mice models. In addition, we demonstrated that compared to macrophages over-expressing TRAIL under a non-inducible promoter, Tri-TRAIL-iM could more effectively induce apoptosis in cancer cells, inhibit tumor growth, and reduce systemic side effects. This strategy of inducing TRAIL delivery holds great potential for cancer therapy. It is promising to be combined with other engineering methods to maximize the therapeutic effects of solid tumors.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"403 ","pages":"Article 104857"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008874924000601","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The high plasticity and long-term persistency make macrophages excellent vehicles for delivering anti-tumor cytokines. Macrophage delivery of chemokines and cytokines shows potential in tumor therapy. TRAIL, a promising anti-tumor cytokine, induces apoptosis in tumor cells with low toxicity to normal cells. However, its off-target toxicity and limited stability have limited its clinical progress. Here, we engineered macrophages with Mono-TRAIL and Tri-TRAIL and found that Tri-TRAIL had higher cytotoxic activity against tumor cells than Mono-TRAIL in vitro. To target the tumor microenvironment (TME), we generated macrophages secreting trimeric TRAIL (Tri-TRAIL-iM) induced by the TME-specific promoter Arg1. The Tri-TRAIL-iM cells displayed high specific activatable activity in cell-based co-culture assay and tumor-baring mice models. In addition, we demonstrated that compared to macrophages over-expressing TRAIL under a non-inducible promoter, Tri-TRAIL-iM could more effectively induce apoptosis in cancer cells, inhibit tumor growth, and reduce systemic side effects. This strategy of inducing TRAIL delivery holds great potential for cancer therapy. It is promising to be combined with other engineering methods to maximize the therapeutic effects of solid tumors.
期刊介绍:
Cellular Immunology publishes original investigations concerned with the immunological activities of cells in experimental or clinical situations. The scope of the journal encompasses the broad area of in vitro and in vivo studies of cellular immune responses. Purely clinical descriptive studies are not considered.
Research Areas include:
• Antigen receptor sites
• Autoimmunity
• Delayed-type hypersensitivity or cellular immunity
• Immunologic deficiency states and their reconstitution
• Immunologic surveillance and tumor immunity
• Immunomodulation
• Immunotherapy
• Lymphokines and cytokines
• Nonantibody immunity
• Parasite immunology
• Resistance to intracellular microbial and viral infection
• Thymus and lymphocyte immunobiology
• Transplantation immunology
• Tumor immunity.