{"title":"User Authentication on Earable Devices via Bone-Conducted Occlusion Sounds","authors":"Yadong Xie, Fan Li, Yue Wu, Yu Wang","doi":"10.1109/TDSC.2023.3335368","DOIUrl":null,"url":null,"abstract":"With the rapid development of mobile devices and the fast increase of sensitive data, secure and convenient mobile authentication technologies are desired. Except for traditional passwords, many mobile devices have biometric-based authentication methods (e.g., fingerprint, voiceprint, and face recognition), but they are vulnerable to spoofing attacks. To solve this problem, we study new biometric features which are based on the dental occlusion and find that the bone-conducted sound of dental occlusion collected in binaural canals contains unique features of individual bones and teeth. Motivated by this, we propose a novel authentication system, TeethPass<inline-formula><tex-math notation=\"LaTeX\">$^+$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mo>+</mml:mo></mml:msup></mml:math><inline-graphic xlink:href=\"li-ieq1-3335368.gif\"/></alternatives></inline-formula>, which uses earbuds to collect occlusal sounds in binaural canals to achieve authentication. First, we design an event detection method based on spectrum variance to detect bone-conducted sounds. Then, we analyze the time-frequency domain of the sounds to filter out motion noises and extract unique features of users from four aspects: teeth structure, bone structure, occlusal location, and occlusal sound. Finally, we train a Triplet network to construct the user template, which is used to complete authentication. Through extensive experiments including 53 volunteers, the performance of TeethPass<inline-formula><tex-math notation=\"LaTeX\">$^+$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mo>+</mml:mo></mml:msup></mml:math><inline-graphic xlink:href=\"li-ieq2-3335368.gif\"/></alternatives></inline-formula> in different environments is verified. TeethPass<inline-formula><tex-math notation=\"LaTeX\">$^+$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mo>+</mml:mo></mml:msup></mml:math><inline-graphic xlink:href=\"li-ieq3-3335368.gif\"/></alternatives></inline-formula> achieves an accuracy of 98.6% and resists 99.7% of spoofing attacks.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2023.3335368","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1
Abstract
With the rapid development of mobile devices and the fast increase of sensitive data, secure and convenient mobile authentication technologies are desired. Except for traditional passwords, many mobile devices have biometric-based authentication methods (e.g., fingerprint, voiceprint, and face recognition), but they are vulnerable to spoofing attacks. To solve this problem, we study new biometric features which are based on the dental occlusion and find that the bone-conducted sound of dental occlusion collected in binaural canals contains unique features of individual bones and teeth. Motivated by this, we propose a novel authentication system, TeethPass$^+$+, which uses earbuds to collect occlusal sounds in binaural canals to achieve authentication. First, we design an event detection method based on spectrum variance to detect bone-conducted sounds. Then, we analyze the time-frequency domain of the sounds to filter out motion noises and extract unique features of users from four aspects: teeth structure, bone structure, occlusal location, and occlusal sound. Finally, we train a Triplet network to construct the user template, which is used to complete authentication. Through extensive experiments including 53 volunteers, the performance of TeethPass$^+$+ in different environments is verified. TeethPass$^+$+ achieves an accuracy of 98.6% and resists 99.7% of spoofing attacks.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.