S. Bouhsissin, N. Sael, F. Benabbou, Abdelfettah Soultana
{"title":"Enhancing machine learning algorithm performance through feature selection for driver behavior classification","authors":"S. Bouhsissin, N. Sael, F. Benabbou, Abdelfettah Soultana","doi":"10.11591/ijeecs.v35.i1.pp354-365","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) techniques empower computers to learn from data and make predictions or decisions in various domains, while preprocessing methods assist in cleaning and transforming data before it can be effectively utilized by ML. Feature selection in ML is a critical process that significantly influences the performance and effectiveness of models. By carefully choosing the most relevant and informative attributes from the dataset, feature selection enhances model accuracy, reduces overfitting, and minimizes computational complexity. In this study, we leverage the UAH-DriveSet dataset to classify driver behavior, employing Filter, embedded, and wrapper methods encompassing 10 distinct feature selection techniques. Through the utilization of diverse ML algorithms, we effectively categorize driver behavior into normal, drowsy, and aggressive classes. The second objective is to employ feature selection techniques to pinpoint the most influential features impacting driver behavior. As a results, random forest emerges as the top-performing classifier, achieving an impressive accuracy of 96.4% and an F1-score of 96.36% using backward feature selection in 7.43 s, while K-nearest neighbour (K-NN) attains an accuracy of 96.29% with forward feature selection in 0.05 s. Following our comprehensive results, we deduce that the primary influential features for studying driver behavior include speed (km/h), course, yaw, impact time, road width, distance to the ahead vehicle, vehicle position, and number of detected vehicles.","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v35.i1.pp354-365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML) techniques empower computers to learn from data and make predictions or decisions in various domains, while preprocessing methods assist in cleaning and transforming data before it can be effectively utilized by ML. Feature selection in ML is a critical process that significantly influences the performance and effectiveness of models. By carefully choosing the most relevant and informative attributes from the dataset, feature selection enhances model accuracy, reduces overfitting, and minimizes computational complexity. In this study, we leverage the UAH-DriveSet dataset to classify driver behavior, employing Filter, embedded, and wrapper methods encompassing 10 distinct feature selection techniques. Through the utilization of diverse ML algorithms, we effectively categorize driver behavior into normal, drowsy, and aggressive classes. The second objective is to employ feature selection techniques to pinpoint the most influential features impacting driver behavior. As a results, random forest emerges as the top-performing classifier, achieving an impressive accuracy of 96.4% and an F1-score of 96.36% using backward feature selection in 7.43 s, while K-nearest neighbour (K-NN) attains an accuracy of 96.29% with forward feature selection in 0.05 s. Following our comprehensive results, we deduce that the primary influential features for studying driver behavior include speed (km/h), course, yaw, impact time, road width, distance to the ahead vehicle, vehicle position, and number of detected vehicles.
机器学习(ML)技术赋予计算机从数据中学习并在不同领域做出预测或决策的能力,而预处理方法则有助于在 ML 有效利用数据之前对其进行清理和转换。人工智能中的特征选择是一个关键过程,对模型的性能和有效性有重大影响。通过从数据集中精心选择最相关、信息量最大的属性,特征选择可以提高模型的准确性,减少过拟合,并最大限度地降低计算复杂度。在本研究中,我们利用 UAH-DriveSet 数据集对驾驶员行为进行分类,采用了包含 10 种不同特征选择技术的过滤法、嵌入法和包装法。通过使用不同的 ML 算法,我们有效地将驾驶员行为分为正常、昏昏欲睡和激进三个类别。第二个目标是采用特征选择技术,找出对驾驶员行为影响最大的特征。根据综合结果,我们推断出研究驾驶员行为的主要影响特征包括速度(km/h)、路线、偏航、撞击时间、道路宽度、与前方车辆的距离、车辆位置和检测到的车辆数量。
期刊介绍:
The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]