The role of radial viscosity force and anisotropic thermal conduction in hot accretion flow

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS New Astronomy Pub Date : 2024-07-11 DOI:10.1016/j.newast.2024.102276
{"title":"The role of radial viscosity force and anisotropic thermal conduction in hot accretion flow","authors":"","doi":"10.1016/j.newast.2024.102276","DOIUrl":null,"url":null,"abstract":"<div><p>Recent observational evidence confirms the weak-collision dynamics of hot optically thin accretion flows around Sgr A<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span> and other nearby galactic nuclei. As a result, thermal conduction as a diffusion process can transfer the heat by electrons in a collisionless magnetized plasma. While most of the previous analytical studies consider the azimuthal viscosity, the recent studies indicated that the radial viscosity strongly affects the properties of the advection dominated accretion discs. So, in this paper, we explore the roles of two parts of anisotropic thermal conduction (parallel and perpendicular) and radial viscosity in the hot accretion disc by considering axisymmetric and steady state assumptions in the presence of outflows that can transport energy from accretion disc outward. We use the set of self-similar solutions to solve the basic equations in our present model. Our solutions reveal that transverse thermal conduction as a cooling mechanism, leads to reductions in gas temperature, disc thickness, and accretion velocity of the disc, whereas the disc rotates at a fast rate. Moreover Our solutions indicate that the perpendicular thermal conduction and the radial viscosity have opposite behavior in the physical variables of the disc. Also, our results have indicated that the anisotropic thermal conduction is significant in the parameter space of radial viscosity, outflow in the regions that the physical constraints <span><math><mrow><msub><mrow><mi>t</mi></mrow><mrow><mi>i</mi><mi>n</mi></mrow></msub><mo>≥</mo><msub><mrow><mi>t</mi></mrow><mrow><mo>⊥</mo><mo>,</mo><mi>c</mi><mi>o</mi><mi>n</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mo>∥</mo><mo>,</mo><mi>c</mi><mi>o</mi><mi>n</mi></mrow></msub><mo>⩽</mo><msub><mrow><mi>q</mi></mrow><mrow><mo>⊥</mo><mo>,</mo><mi>c</mi><mi>o</mi><mi>n</mi></mrow></msub></mrow></math></span> are satisfied.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1384107624000903","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent observational evidence confirms the weak-collision dynamics of hot optically thin accretion flows around Sgr A and other nearby galactic nuclei. As a result, thermal conduction as a diffusion process can transfer the heat by electrons in a collisionless magnetized plasma. While most of the previous analytical studies consider the azimuthal viscosity, the recent studies indicated that the radial viscosity strongly affects the properties of the advection dominated accretion discs. So, in this paper, we explore the roles of two parts of anisotropic thermal conduction (parallel and perpendicular) and radial viscosity in the hot accretion disc by considering axisymmetric and steady state assumptions in the presence of outflows that can transport energy from accretion disc outward. We use the set of self-similar solutions to solve the basic equations in our present model. Our solutions reveal that transverse thermal conduction as a cooling mechanism, leads to reductions in gas temperature, disc thickness, and accretion velocity of the disc, whereas the disc rotates at a fast rate. Moreover Our solutions indicate that the perpendicular thermal conduction and the radial viscosity have opposite behavior in the physical variables of the disc. Also, our results have indicated that the anisotropic thermal conduction is significant in the parameter space of radial viscosity, outflow in the regions that the physical constraints tint,con and q,conq,con are satisfied.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热吸积流中径向粘滞力和各向异性热传导的作用
最近的观测证据证实,Sgr A∗ 和其他邻近星系核周围的热光学稀薄吸积流具有弱碰撞动力学。因此,热传导作为一种扩散过程,可以通过电子在无碰撞磁化等离子体中传递热量。以往的分析研究大多考虑方位粘度,而最近的研究表明,径向粘度对平流主导吸积盘的性质影响很大。因此,在本文中,我们通过考虑轴对称和稳态假设,探讨了热吸积盘中各向异性热传导(平行和垂直)和径向粘度两部分的作用。我们使用自相似解集来求解本模型的基本方程。我们的求解结果表明,横向热传导作为一种冷却机制,会导致气体温度、圆盘厚度和圆盘的吸积速度降低,而圆盘却在快速旋转。此外,我们的求解表明,垂直热传导和径向粘度在圆盘的物理变量中具有相反的行为。同时,我们的结果还表明,在满足物理约束条件 tin≥t⊥,con 和 q∥,con⩽q⊥,con 的区域,各向异性热传导在径向粘度、外流等参数空间中具有重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Astronomy
New Astronomy 地学天文-天文与天体物理
CiteScore
4.00
自引率
10.00%
发文量
109
审稿时长
13.6 weeks
期刊介绍: New Astronomy publishes articles in all fields of astronomy and astrophysics, with a particular focus on computational astronomy: mathematical and astronomy techniques and methodology, simulations, modelling and numerical results and computational techniques in instrumentation. New Astronomy includes full length research articles and review articles. The journal covers solar, stellar, galactic and extragalactic astronomy and astrophysics. It reports on original research in all wavelength bands, ranging from radio to gamma-ray.
期刊最新文献
Slowly rotating charged Bardeen stellar structure Composition tracking for collisions between differentiated bodies in REBOUND NcorpiON : A O(N) software for N-body integration in collisional and fragmenting systems Study of solar activities associated with a Halo CME on 17 Feb 2023 event Discovery of 226 δ Scuti and γ Doradus Stars near NGC 6871 with TESS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1