{"title":"A sharper definition of alignment for Panoptic Quality","authors":"Ruben van Heusden, Maarten Marx","doi":"10.1016/j.patrec.2024.07.005","DOIUrl":null,"url":null,"abstract":"<div><p>The Panoptic Quality metric, developed by Kirillov et al. in 2019, makes object-level precision, recall and F1 measures available for evaluating image segmentation, and more generally any partitioning task, against a gold standard. Panoptic Quality is based on partial isomorphisms between hypothesized and true segmentations. Kirillov et al. desire that functions defining these one-to-one matchings should be simple, interpretable and effectively computable. They show that for <span><math><mi>t</mi></math></span> and <span><math><mi>h</mi></math></span>, true and hypothesized segments, the condition stating that there are more correct than wrongly predicted pixels, formalized as <span><math><mrow><mi>I</mi><mi>o</mi><mi>U</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>h</mi><mo>)</mo></mrow><mo>></mo><mo>.</mo><mn>5</mn></mrow></math></span> or equivalently as <span><math><mrow><mo>|</mo><mi>t</mi><mo>∩</mo><mi>h</mi><mo>|</mo><mo>></mo><mo>.</mo><mn>5</mn><mo>|</mo><mi>t</mi><mo>∪</mo><mi>h</mi><mo>|</mo></mrow></math></span> has these properties. We show that a weaker function, requiring that more than half of the pixels in the hypothesized segment are in the true segment and vice-versa, formalized as <span><math><mrow><mo>|</mo><mi>t</mi><mo>∩</mo><mi>h</mi><mo>|</mo><mo>></mo><mo>.</mo><mn>5</mn><mo>|</mo><mi>t</mi><mo>|</mo></mrow></math></span> and <span><math><mrow><mo>|</mo><mi>t</mi><mo>∩</mo><mi>h</mi><mo>|</mo><mo>></mo><mo>.</mo><mn>5</mn><mo>|</mo><mi>h</mi><mo>|</mo></mrow></math></span>, is not only sufficient but also necessary. With a small proviso, every function defining a partial isomorphism satisfies this condition. We theoretically and empirically compare the two conditions.</p></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"185 ","pages":"Pages 87-93"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167865524002083/pdfft?md5=bb6442127be088116923de392456ce0d&pid=1-s2.0-S0167865524002083-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002083","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The Panoptic Quality metric, developed by Kirillov et al. in 2019, makes object-level precision, recall and F1 measures available for evaluating image segmentation, and more generally any partitioning task, against a gold standard. Panoptic Quality is based on partial isomorphisms between hypothesized and true segmentations. Kirillov et al. desire that functions defining these one-to-one matchings should be simple, interpretable and effectively computable. They show that for and , true and hypothesized segments, the condition stating that there are more correct than wrongly predicted pixels, formalized as or equivalently as has these properties. We show that a weaker function, requiring that more than half of the pixels in the hypothesized segment are in the true segment and vice-versa, formalized as and , is not only sufficient but also necessary. With a small proviso, every function defining a partial isomorphism satisfies this condition. We theoretically and empirically compare the two conditions.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.