Enhancing authenticity and trust in social media: an automated approach for detecting fake profiles

M. V. Unni, J. S., Jacob Joseph Kalapurackal, Saba Fatma
{"title":"Enhancing authenticity and trust in social media: an automated approach for detecting fake profiles","authors":"M. V. Unni, J. S., Jacob Joseph Kalapurackal, Saba Fatma","doi":"10.11591/ijeecs.v35.i1.pp292-300","DOIUrl":null,"url":null,"abstract":"Fake profile detection on social media is a critical task intended for detecting and alleviating the existence of deceptive or fraudulent user profiles. These fake profiles, frequently generated with malicious intent, could engage in different forms of spreading disinformation, online fraud, or spamming. A range of techniques is employed to solve these problems such as natural language processing (NLP), machine learning (ML), and behavioural analysis, to examine engagement patterns, user-generated content, and profile characteristics. This paper proposes an automated fake profile detection using the coyote optimization algorithm with deep learning (FPD-COADL) method on social media. This multifaceted approach scrutinizes user-generated content, engagement patterns, and profile attributes to differentiate genuine user accounts from deceptive ones, ultimately reinforcing the authenticity and trustworthiness of social networking platforms. The presented FPD-COADL method uses robust data pre-processing methods to enhance the uniformness and quality of data. Besides, the FPD-COADL method applies deep belief network (DBN) for the recognition and classification of fake accounts. Extensive experiments and evaluations on own collected social media datasets underscore the effectiveness of the approach, showcasing its potential to identify fake profiles with high scalability and precision.","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v35.i1.pp292-300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Fake profile detection on social media is a critical task intended for detecting and alleviating the existence of deceptive or fraudulent user profiles. These fake profiles, frequently generated with malicious intent, could engage in different forms of spreading disinformation, online fraud, or spamming. A range of techniques is employed to solve these problems such as natural language processing (NLP), machine learning (ML), and behavioural analysis, to examine engagement patterns, user-generated content, and profile characteristics. This paper proposes an automated fake profile detection using the coyote optimization algorithm with deep learning (FPD-COADL) method on social media. This multifaceted approach scrutinizes user-generated content, engagement patterns, and profile attributes to differentiate genuine user accounts from deceptive ones, ultimately reinforcing the authenticity and trustworthiness of social networking platforms. The presented FPD-COADL method uses robust data pre-processing methods to enhance the uniformness and quality of data. Besides, the FPD-COADL method applies deep belief network (DBN) for the recognition and classification of fake accounts. Extensive experiments and evaluations on own collected social media datasets underscore the effectiveness of the approach, showcasing its potential to identify fake profiles with high scalability and precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高社交媒体的真实性和信任度:检测虚假资料的自动方法
社交媒体上的虚假用户配置文件检测是一项重要任务,旨在检测和减少欺骗性或欺诈性用户配置文件的存在。这些虚假用户配置文件通常是出于恶意生成的,可能以不同形式传播虚假信息、进行在线欺诈或发送垃圾邮件。为解决这些问题,我们采用了一系列技术,如自然语言处理(NLP)、机器学习(ML)和行为分析,以检查参与模式、用户生成的内容和档案特征。本文提出了在社交媒体上使用带有深度学习(FPD-COADL)的土狼优化算法自动检测虚假个人资料的方法。这种多层面的方法会仔细检查用户生成的内容、参与模式和个人资料属性,以区分真实用户账户和欺骗性账户,最终加强社交网络平台的真实性和可信度。所介绍的 FPD-COADL 方法采用稳健的数据预处理方法来提高数据的统一性和质量。此外,FPD-COADL 方法还应用了深度信念网络(DBN)对虚假账户进行识别和分类。在自己收集的社交媒体数据集上进行的大量实验和评估凸显了该方法的有效性,展示了它在识别虚假资料方面的潜力,具有很高的可扩展性和精确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
782
期刊介绍: The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]
期刊最新文献
Sampled-data observer design for sensorless control of wind energy conversion system with PMSG URL shortener for web consumption: an extensive and impressive security algorithm Artificial intelligence powered internet of vehicles: securing connected vehicles in 6G PQ enhancement in grid connected EV charging station using novel GVCR control algorithm for AUPQC device Identification of soluble solid content and total acid content using real-time visual inspection system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1