{"title":"Hyperspectral image construction in different spectral bands of tea leafs for identifying the tea type using O-ConvNet-RF model","authors":"Likitha Gongalla, Monali Bordoloi","doi":"10.11591/ijeecs.v35.i1.pp301-309","DOIUrl":null,"url":null,"abstract":"Tea, a commonly consumed beverage, is susceptible to being sold in adulterated or expired forms by third-party vendors. Hyperspectral imaging across different wavelength bands has proven to precisely assess the diverse types of tea and their corresponding financial gains. This study aims to employ a deep learning methodology in conjunction with hyperspectral imaging for efficiently classifying tea leaves. A novel approach is proposed, wherein a waveband convolutional neural network is utilized to generate hyper spectral images of tea leaf samples with enhanced resolution. The model known as optimized-convolutional neural network-random forest O- (ConvNet-RF) demonstrated exceptional performance, achieving high accuracy, impressive recall, F1 score, and notable sensitivity rate, outperforming existing alternative methods. The tea leaf types, namely green, yellow, and black, were accurately identified using a combination of the random forest (RF) model and the O-ConvNet-RF model. The tree-based classification method for the identification of tea leaves demonstrated superior performance as compared to alternative machine learning models. In general, this study presents a successful methodology for the classification of tea leaves, with potential implications for consumer processing and distributor profit analysis.","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v35.i1.pp301-309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Tea, a commonly consumed beverage, is susceptible to being sold in adulterated or expired forms by third-party vendors. Hyperspectral imaging across different wavelength bands has proven to precisely assess the diverse types of tea and their corresponding financial gains. This study aims to employ a deep learning methodology in conjunction with hyperspectral imaging for efficiently classifying tea leaves. A novel approach is proposed, wherein a waveband convolutional neural network is utilized to generate hyper spectral images of tea leaf samples with enhanced resolution. The model known as optimized-convolutional neural network-random forest O- (ConvNet-RF) demonstrated exceptional performance, achieving high accuracy, impressive recall, F1 score, and notable sensitivity rate, outperforming existing alternative methods. The tea leaf types, namely green, yellow, and black, were accurately identified using a combination of the random forest (RF) model and the O-ConvNet-RF model. The tree-based classification method for the identification of tea leaves demonstrated superior performance as compared to alternative machine learning models. In general, this study presents a successful methodology for the classification of tea leaves, with potential implications for consumer processing and distributor profit analysis.
期刊介绍:
The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]