Microstructural, electrochemical, and hot corrosion analysis of CoCrFeCuTi high entropy alloy reinforced titanium matrix composites synthesized by microwave sintering

S. Ragunath , N. Radhika , S Aravind Krishna , Alokesh Pramanik
{"title":"Microstructural, electrochemical, and hot corrosion analysis of CoCrFeCuTi high entropy alloy reinforced titanium matrix composites synthesized by microwave sintering","authors":"S. Ragunath ,&nbsp;N. Radhika ,&nbsp;S Aravind Krishna ,&nbsp;Alokesh Pramanik","doi":"10.1016/j.ijlmm.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><div>CoCrFeCuTi High Entropy Alloy (HEA) is reinforced in Ti6Al6V2Sn alloy through microwave sintering-assisted powder metallurgy and its corrosion behaviour is investigated under different conditions. The ball-milled CoCrFeCuTi HEA powder exhibits 17 μm average particle size of irregular fragments with a single-phase BCC structure and is added as reinforcement in Ti alloy at 3, 6, 9, and 12 wt%. As more reinforcement is added, the α-Ti decreases and β-Ti increases which enhances the interfacial bonding. The pinning effects from reinforcements inhibit grain growth contributing to improved properties including higher relative density with less porosity. The 12 wt% composite showed remarkable microhardness of 734 HV which is increased by 43.8% over Ti alloy. The 12 wt% composite also achieved finer grains (0.345 μm) due to uniform internal heat generation from the process. Corrosion behaviour is assessed through electrochemical corrosion and hot corrosion analysis, with 12 wt% composite demonstrating better corrosion resistance compared to Ti alloy. The induced corrosion products, formation of passivation films, and their mechanism are examined by morphological analysis.</div></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":"8 1","pages":"Pages 141-155"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840424000684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

CoCrFeCuTi High Entropy Alloy (HEA) is reinforced in Ti6Al6V2Sn alloy through microwave sintering-assisted powder metallurgy and its corrosion behaviour is investigated under different conditions. The ball-milled CoCrFeCuTi HEA powder exhibits 17 μm average particle size of irregular fragments with a single-phase BCC structure and is added as reinforcement in Ti alloy at 3, 6, 9, and 12 wt%. As more reinforcement is added, the α-Ti decreases and β-Ti increases which enhances the interfacial bonding. The pinning effects from reinforcements inhibit grain growth contributing to improved properties including higher relative density with less porosity. The 12 wt% composite showed remarkable microhardness of 734 HV which is increased by 43.8% over Ti alloy. The 12 wt% composite also achieved finer grains (0.345 μm) due to uniform internal heat generation from the process. Corrosion behaviour is assessed through electrochemical corrosion and hot corrosion analysis, with 12 wt% composite demonstrating better corrosion resistance compared to Ti alloy. The induced corrosion products, formation of passivation films, and their mechanism are examined by morphological analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微波烧结法合成的 CoCrFeCuTi 高熵合金增强钛基复合材料的微观结构、电化学和热腐蚀分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
期刊最新文献
Editorial Board Microstructural, electrochemical, and hot corrosion analysis of CoCrFeCuTi high entropy alloy reinforced titanium matrix composites synthesized by microwave sintering Hybrid intelligence framework for optimizing shear capacity of lightweight FRP-reinforced concrete beams Microstructural modification, mechanical properties, and wear behaviour of aged Al–Si–Mg/Si3N4 composites for aerospace applications Microstructural analysis and preliminary wear assessment of wire arc additive manufactured AA 5083 aluminum alloy for lightweight structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1