A micro Reinforcement Learning architecture for Intrusion Detection Systems

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Letters Pub Date : 2024-07-15 DOI:10.1016/j.patrec.2024.07.010
Boshra Darabi, Mozafar Bag-Mohammadi, Mojtaba Karami
{"title":"A micro Reinforcement Learning architecture for Intrusion Detection Systems","authors":"Boshra Darabi,&nbsp;Mozafar Bag-Mohammadi,&nbsp;Mojtaba Karami","doi":"10.1016/j.patrec.2024.07.010","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes an Intrusion Detection System (IDS) that utilizes Deep Reinforcement Learning (DRL) in a fine-grained manner to enhance the performance of binary and multiclass intrusion classification tasks. The proposed system, named Micro Reinforcement Learning Classifier (MRLC), is evaluated using three standard datasets. MRLC architecture utilizes a fine-grained learning approach to enhance IDS accuracy. Simulation studies demonstrate that MRLC has a high efficiency in discriminating different intrusion classes, outperforming state-of-the-art RL-based methods. The average accuracy of MRLC is 99.56%, 99.99%, 99.01% for NSL-KDD, CIC-IDS2018, and UNSW-NB15 datasets respectively. The implementation codes are available at <span><span>https://github.com/boshradarabi/MICRO-RL-IDS</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"185 ","pages":"Pages 81-86"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002137","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an Intrusion Detection System (IDS) that utilizes Deep Reinforcement Learning (DRL) in a fine-grained manner to enhance the performance of binary and multiclass intrusion classification tasks. The proposed system, named Micro Reinforcement Learning Classifier (MRLC), is evaluated using three standard datasets. MRLC architecture utilizes a fine-grained learning approach to enhance IDS accuracy. Simulation studies demonstrate that MRLC has a high efficiency in discriminating different intrusion classes, outperforming state-of-the-art RL-based methods. The average accuracy of MRLC is 99.56%, 99.99%, 99.01% for NSL-KDD, CIC-IDS2018, and UNSW-NB15 datasets respectively. The implementation codes are available at https://github.com/boshradarabi/MICRO-RL-IDS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
入侵检测系统的微型强化学习架构
本文提出了一种入侵检测系统(IDS),它以细粒度的方式利用深度强化学习(DRL)来提高二元和多类别入侵分类任务的性能。该系统被命名为微强化学习分类器(MRLC),使用三个标准数据集对其进行了评估。MRLC 架构利用细粒度学习方法来提高 IDS 的准确性。仿真研究表明,MRLC 在区分不同入侵类别方面具有很高的效率,优于最先进的基于 RL 的方法。在 NSL-KDD、CIC-IDS2018 和 UNSW-NB15 数据集上,MRLC 的平均准确率分别为 99.56%、99.99% 和 99.01%。实现代码可在 https://github.com/boshradarabi/MICRO-RL-IDS 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
期刊最新文献
Personalized Federated Learning on long-tailed data via knowledge distillation and generated features Adaptive feature alignment for adversarial training Discrete diffusion models with Refined Language-Image Pre-trained representations for remote sensing image captioning A unified framework to stereotyped behavior detection for screening Autism Spectrum Disorder Explainable hypergraphs for gait based Parkinson classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1