Advancing smart tourism destinations: A case study using bidirectional encoder representations from transformers‐based occupancy predictions in torrevieja (Spain)

IF 2.1 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IET Smart Cities Pub Date : 2024-07-01 DOI:10.1049/smc2.12085
José Ginés Giménez Manuel, José Giner Pérez de Lucia, Marco Antonio Celdrán Bernabeu, José Norberto Mazón López, Juan Carlos Cano Escribá, José María Cecilia Canales
{"title":"Advancing smart tourism destinations: A case study using bidirectional encoder representations from transformers‐based occupancy predictions in torrevieja (Spain)","authors":"José Ginés Giménez Manuel, José Giner Pérez de Lucia, Marco Antonio Celdrán Bernabeu, José Norberto Mazón López, Juan Carlos Cano Escribá, José María Cecilia Canales","doi":"10.1049/smc2.12085","DOIUrl":null,"url":null,"abstract":"Tourism represents a crucial socio‐economic pillar globally, yet the multifaceted challenges it poses necessitate innovative management approaches. The paradigm of smart tourism harnesses advanced data analytics tools to promote both profitability and sustainability in tourist destinations, leading to new levels of destination smartness. Accurate tourist occupancy prediction, particularly in areas dominated by second‐home accommodations where traditional hospitality data may be insufficient, plays a key role in optimising tourism management. To address this data gap, our prior research employed ARIMA modelling on Airbnb booking time series and analysed tourism‐related Twitter conversations to forecast occupancy levels in Torrevieja (Alicante); a prominent second‐home tourism destination in Southeastern Spain. In this extended study, we delve deeper into the realm of social sensing by utilising bidirectional encoder representations from transformers (BERT) for topic modelling. Our methodology involves the processing and analysis of Twitter data to identify prominent themes related to Torrevieja. The findings not only reveal nuanced perceptions and discussions about the destination but also underscore the effectiveness of BERT in capturing intricate topic dynamics. Importantly, this work highlights how the alignment of specific topics with booking patterns can further enhance predictive accuracy for tourist occupancy, presenting a robust toolkit for stakeholders in the tourism sector.","PeriodicalId":34740,"journal":{"name":"IET Smart Cities","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/smc2.12085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Tourism represents a crucial socio‐economic pillar globally, yet the multifaceted challenges it poses necessitate innovative management approaches. The paradigm of smart tourism harnesses advanced data analytics tools to promote both profitability and sustainability in tourist destinations, leading to new levels of destination smartness. Accurate tourist occupancy prediction, particularly in areas dominated by second‐home accommodations where traditional hospitality data may be insufficient, plays a key role in optimising tourism management. To address this data gap, our prior research employed ARIMA modelling on Airbnb booking time series and analysed tourism‐related Twitter conversations to forecast occupancy levels in Torrevieja (Alicante); a prominent second‐home tourism destination in Southeastern Spain. In this extended study, we delve deeper into the realm of social sensing by utilising bidirectional encoder representations from transformers (BERT) for topic modelling. Our methodology involves the processing and analysis of Twitter data to identify prominent themes related to Torrevieja. The findings not only reveal nuanced perceptions and discussions about the destination but also underscore the effectiveness of BERT in capturing intricate topic dynamics. Importantly, this work highlights how the alignment of specific topics with booking patterns can further enhance predictive accuracy for tourist occupancy, presenting a robust toolkit for stakeholders in the tourism sector.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推进智慧旅游目的地建设:使用基于变压器的托雷维耶哈(西班牙)入住率预测的双向编码器表示的案例研究
旅游业是全球重要的社会经济支柱,但它所带来的多方面挑战要求我们采取创新的管理方法。智慧旅游模式利用先进的数据分析工具来提高旅游目的地的盈利能力和可持续发展能力,从而将目的地的智能化提升到新的水平。准确的游客入住率预测,尤其是在以二手房住宿为主的地区,因为这些地区的传统接待数据可能不足,而准确的游客入住率预测在优化旅游管理方面发挥着关键作用。为了解决这一数据缺口问题,我们之前的研究对 Airbnb 预订时间序列采用了 ARIMA 建模,并分析了与旅游相关的 Twitter 会话,以预测西班牙东南部著名的第二居所旅游目的地托雷维耶哈(阿利坎特)的入住率水平。在这项扩展研究中,我们利用来自变换器的双向编码器表征(BERT)进行主题建模,从而更深入地研究社会感知领域。我们的方法包括处理和分析 Twitter 数据,以确定与托雷维耶哈相关的突出主题。研究结果不仅揭示了有关该目的地的细微看法和讨论,还强调了 BERT 在捕捉错综复杂的主题动态方面的有效性。重要的是,这项工作强调了特定主题与预订模式的结合如何进一步提高游客入住率的预测准确性,为旅游业的利益相关者提供了一个强大的工具包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Smart Cities
IET Smart Cities Social Sciences-Urban Studies
CiteScore
7.70
自引率
3.20%
发文量
25
审稿时长
21 weeks
期刊最新文献
Guest Editorial: Smart cities 2.0: How Artificial Intelligence and Internet of Things are transforming urban living A hybrid attention‐based long short‐term memory fast model for thermal regulation of smart residential buildings A collaborative WSN‐IoT‐Animal for large‐scale data collection Advancing smart tourism destinations: A case study using bidirectional encoder representations from transformers‐based occupancy predictions in torrevieja (Spain) Smart city fire surveillance: A deep state-space model with intelligent agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1