{"title":"Evaluation of machine learning algorithms in the early detection of Parkinson's disease: a comparative study","authors":"Joselyn Zapata-Paulini, M. Cabanillas-Carbonell","doi":"10.11591/ijeecs.v35.i1.pp222-237","DOIUrl":null,"url":null,"abstract":"Parkinson's is a neurodegenerative disease that generally affects people over 60 years of age. The disease destroys neurons and increases the accumulation of α-synuclein in many parts of the brain stem, although at present its causes remain unknown. It is therefore a priority to identify a method that can detect the disease, and this is where machine learning models become important. This study aims to perform a comparative analysis of machine learning models focused on the early detection of Parkinson's disease. Logistic regression (LR), support vector machines (SVM), decision trees (DT), extra trees classifiers (ETC), K-nearest neighbors (KNN), random forests (RF), adaptive boosting (AdaBoost) and gradient boosting (GB) algorithms are described and developed to identify the one that offers the best performance. In the training stage, we used the Oxford University dataset for Parkinson's disease detection, which has a total of 23 attributes and 195 records on patient voice recordings. The article is structured into six sections, such as introduction, related work, methodology, results, discussions, and conclusions. The metrics of accuracy, sensitivity, F1 count, and precision were used to measure the models' performance. The results position the KNN model as the best predictor with 95% accuracy, precision, sensitivity, and F1 score.","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v35.i1.pp222-237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's is a neurodegenerative disease that generally affects people over 60 years of age. The disease destroys neurons and increases the accumulation of α-synuclein in many parts of the brain stem, although at present its causes remain unknown. It is therefore a priority to identify a method that can detect the disease, and this is where machine learning models become important. This study aims to perform a comparative analysis of machine learning models focused on the early detection of Parkinson's disease. Logistic regression (LR), support vector machines (SVM), decision trees (DT), extra trees classifiers (ETC), K-nearest neighbors (KNN), random forests (RF), adaptive boosting (AdaBoost) and gradient boosting (GB) algorithms are described and developed to identify the one that offers the best performance. In the training stage, we used the Oxford University dataset for Parkinson's disease detection, which has a total of 23 attributes and 195 records on patient voice recordings. The article is structured into six sections, such as introduction, related work, methodology, results, discussions, and conclusions. The metrics of accuracy, sensitivity, F1 count, and precision were used to measure the models' performance. The results position the KNN model as the best predictor with 95% accuracy, precision, sensitivity, and F1 score.
期刊介绍:
The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]