ODL: Opportunistic Distributed Learning for Intelligent IoT Systems

A. Abdellatif, Noor Khial, Menna Helmy, Amr Mohamed, A. Erbad, K. Shaban
{"title":"ODL: Opportunistic Distributed Learning for Intelligent IoT Systems","authors":"A. Abdellatif, Noor Khial, Menna Helmy, Amr Mohamed, A. Erbad, K. Shaban","doi":"10.1109/IOTM.001.2300187","DOIUrl":null,"url":null,"abstract":"As we transition from centralized machine learning to distributed learning, new practices can significantly enhance intelligent Internet of Things (IoT) systems. This article introduces the concept of Opportunistic Distributed Learning (ODL), a general framework that enables any node in a network to initiates learning tasks by leveraging local, unused distributed resources collaboratively. ODL, facilitated by edge intelligence, promotes collective responsibility, pervasive and flexible distributed learning, allowing participating nodes to freely move, group, and regroup based on their conditions and benefits. The article discusses key research challenges of ODL in intelligent IoT systems, presents the ODL framework, proposes a reputation-based node selection scheme, and highlights the benefits and future research directions of the ODL system.","PeriodicalId":235472,"journal":{"name":"IEEE Internet of Things Magazine","volume":"39 1","pages":"92-99"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOTM.001.2300187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As we transition from centralized machine learning to distributed learning, new practices can significantly enhance intelligent Internet of Things (IoT) systems. This article introduces the concept of Opportunistic Distributed Learning (ODL), a general framework that enables any node in a network to initiates learning tasks by leveraging local, unused distributed resources collaboratively. ODL, facilitated by edge intelligence, promotes collective responsibility, pervasive and flexible distributed learning, allowing participating nodes to freely move, group, and regroup based on their conditions and benefits. The article discusses key research challenges of ODL in intelligent IoT systems, presents the ODL framework, proposes a reputation-based node selection scheme, and highlights the benefits and future research directions of the ODL system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ODL:面向智能物联网系统的机会性分布式学习
随着我们从集中式机器学习过渡到分布式学习,新的实践可以显著增强智能物联网(IoT)系统。本文介绍了 "机会分布式学习"(ODL)的概念,这是一个通用框架,可使网络中的任何节点通过协作利用本地闲置分布式资源启动学习任务。在边缘智能的推动下,ODL 可促进集体责任、普及和灵活的分布式学习,允许参与节点根据自身条件和利益自由移动、分组和重组。文章讨论了智能物联网系统中 ODL 的关键研究挑战,介绍了 ODL 框架,提出了基于声誉的节点选择方案,并强调了 ODL 系统的优势和未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ubiquitous Integrated Sensing and Communications for Massive MIMO LEO Satellite Systems AI for Critical Infrastructure Security: Concepts, Challenges, and Future Directions Mentor's Musings on Integrated Sensing & Communication - A Major Leap Towards an Ubiquitous IoT Paradigm IEEE Medala of Honor Cover 4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1