{"title":"Study of BaTiO3-doped Bi2O3/ZnO varistor microstructure and its electrical characteristics","authors":"Faiçal Kharchouche, Yousra Malaoui, O. Bouketir","doi":"10.11591/ijeecs.v35.i1.pp42-51","DOIUrl":null,"url":null,"abstract":"This study presents the characterization and optimization of BaTiO<sub>3</sub>-doped ZnO-based varistors for electrical and electronic applications. The varistors were prepared using a conventional ceramic procedure and were sintered at a temperature of 1,000 °C with different concentrations of BaTiO<sub>3</sub> (0 and 3 mol%) added to the Bi<sub>2</sub>O<sub>3</sub>/ZnO-based varistor composition (99.5 mol% ZnO and 0.5 mol% Bi<sub>2</sub>O<sub>3</sub>). The results showed that the addition of BaTiO<sub>3</sub> led to the formation of various oxides and solid solutions, such as Bi1<sub>2</sub>TiO<sub>20</sub>, BaTiO<sub>3</sub>, and (Bi<sub>2</sub>O<sub>3</sub>)<sub>0.80</sub> (BaO)<sub>0.20</sub>. The dielectric constant and grain size decreased with increasing BaTiO<sub>3</sub> content, while the non-linearity coefficient, electric fields (Eb) increased, and dielectric loss (Tanδ) decreased. The optimized varistor contains 2 mol% BaTiO<sub>3</sub> and an electric field of 148.08 V/mm, which are superior to those of the BaTiO<sub>3</sub>/Bi<sub>2</sub>O<sub>3</sub>/ZnO-based varistor. During this study, we were able to observe that a slight addition of BaTiO<sub>3</sub> will increase the breakdown voltage and the coefficient of nonlinearity and this will allow us to develop low-dimensional varistors and install them in the high-voltage domain.","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v35.i1.pp42-51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the characterization and optimization of BaTiO3-doped ZnO-based varistors for electrical and electronic applications. The varistors were prepared using a conventional ceramic procedure and were sintered at a temperature of 1,000 °C with different concentrations of BaTiO3 (0 and 3 mol%) added to the Bi2O3/ZnO-based varistor composition (99.5 mol% ZnO and 0.5 mol% Bi2O3). The results showed that the addition of BaTiO3 led to the formation of various oxides and solid solutions, such as Bi12TiO20, BaTiO3, and (Bi2O3)0.80 (BaO)0.20. The dielectric constant and grain size decreased with increasing BaTiO3 content, while the non-linearity coefficient, electric fields (Eb) increased, and dielectric loss (Tanδ) decreased. The optimized varistor contains 2 mol% BaTiO3 and an electric field of 148.08 V/mm, which are superior to those of the BaTiO3/Bi2O3/ZnO-based varistor. During this study, we were able to observe that a slight addition of BaTiO3 will increase the breakdown voltage and the coefficient of nonlinearity and this will allow us to develop low-dimensional varistors and install them in the high-voltage domain.
期刊介绍:
The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]