{"title":"Internet of thing based health monitoring system using wearable sensors networks","authors":"Mohsina Mirza, Valarmathi Periyasamy, Mekala Ramesh, Sathya Mariappan, Sudarmani Rajagopal, K. Suriyan, Kanagaraj Venusamy","doi":"10.11591/ijres.v13.i2.pp424-430","DOIUrl":null,"url":null,"abstract":"Maintaining mental and physical health is becoming increasingly important for maintaining independent living, particularly as the population of people suffering from chronic illnesses like diabetes, heart disease, obesity, and other conditions rises and the average age of many societies keeps rising. Using sensors, monitoring health remotely, and ultimately recognising daily activities have all been proposed as potential strategies. In this work, fatigue threshold and environmental bounds are assessed and provided via an external interface to a microcontroller unit (MCU) in addition to the required restrictions. Rerouting the required boundaries into the long range (LoRa) and Bluetooth module, the MCU is responsible for editing and analysing the raw data to remove the oxygen immersion, pulse, and temperature data. These important restrictions are sent to many terminals, such as PCs and mobile devices, using the remote Bluetooth and LoRa module. For data storage and retrieval, any IoT platform may be used. With caution, the patient is discharged home after the medical experts have carefully evaluated the diseases in light of the new features. To telemonitor patients with heart conditions, the test results show that the framework is efficient and dependable for collecting, sending, and presenting electrocardiogram (ECG) data constantly.","PeriodicalId":158991,"journal":{"name":"International Journal of Reconfigurable and Embedded Systems (IJRES)","volume":"27 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reconfigurable and Embedded Systems (IJRES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijres.v13.i2.pp424-430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Maintaining mental and physical health is becoming increasingly important for maintaining independent living, particularly as the population of people suffering from chronic illnesses like diabetes, heart disease, obesity, and other conditions rises and the average age of many societies keeps rising. Using sensors, monitoring health remotely, and ultimately recognising daily activities have all been proposed as potential strategies. In this work, fatigue threshold and environmental bounds are assessed and provided via an external interface to a microcontroller unit (MCU) in addition to the required restrictions. Rerouting the required boundaries into the long range (LoRa) and Bluetooth module, the MCU is responsible for editing and analysing the raw data to remove the oxygen immersion, pulse, and temperature data. These important restrictions are sent to many terminals, such as PCs and mobile devices, using the remote Bluetooth and LoRa module. For data storage and retrieval, any IoT platform may be used. With caution, the patient is discharged home after the medical experts have carefully evaluated the diseases in light of the new features. To telemonitor patients with heart conditions, the test results show that the framework is efficient and dependable for collecting, sending, and presenting electrocardiogram (ECG) data constantly.