Jun Cao , Jun Qiu , Jieyu Jin , Sheng Zhang , Jiahui Qu , Mingyue Wang , Longwei Qiao , Yuting Liang
{"title":"Immature platelet fraction levels predict the development of prolonged thrombocytopenia after haematopoietic stem cell transplantation","authors":"Jun Cao , Jun Qiu , Jieyu Jin , Sheng Zhang , Jiahui Qu , Mingyue Wang , Longwei Qiao , Yuting Liang","doi":"10.1016/j.pathol.2024.04.014","DOIUrl":null,"url":null,"abstract":"<div><div>Prolonged thrombocytopenia (PT) is a serious complication after haematopoietic stem cell transplantation (HSCT). PT has been suggested to be associated with an increased platelet transfusion requirement and poor outcomes after transplantation. Due to the complex mechanism of PT development, it is difficult to diagnose in the early post-transplant period. Our study aimed to identify an early predictive marker for PT after HSCT. Previous studies showed that the clinical utility of immature platelet fraction (IPF) predicts platelet recovery after chemotherapy and successful engraftment. However, the relationship between IPF and PT after HSCT remains unclear. Fifty-two patients with malignant haematological diseases who underwent HSCT were included in the study. We observed the kinetics of recovery of haematological parameters after transplantation and performed receiver operating characteristics (ROC) curve analysis using data from the 52 HSCT patients.</div><div>The days to rise and peak of IPF, absolute IPF count (A-IPF) and highly fluorescent IPF (H-IPF) were almost synchronised in all patients, at day 10 and day 15, respectively. The begin to rise levels of IPF, H-IPF and A-IPF were all significantly lower in the PT group than in the good engraftment (GE) group (<em>p</em>=0.0016, <em>p</em>=0.0094, <em>p</em>=0.0086, respectively). The peak levels of IPF were significantly lower in the PT group than the GE group (<em>p</em>=0.0036). However, the peaks of H-IPF and A-IPF were not statistically significant between the two groups (<em>p</em>=0.3383, <em>p</em>=0.0887, respectively). The area under the ROC curve (AUC) of IPF rise was 0.739 (95% CI 0.583–0.896; <em>p</em><0.05) and the cut-off value was 3.5%, while the AUC of IPF peak was 0.800 (95% CI 0.637–0.962; <em>p</em><0.01) and the cut-off value was 8.0%. In conclusion, early low levels of IPF predict the development of PT after HSCT. These findings may help improve the management and treatment strategies for PT after HSCT.</div></div>","PeriodicalId":19915,"journal":{"name":"Pathology","volume":"56 7","pages":"Pages 1000-1006"},"PeriodicalIF":3.6000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031302524001752","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Prolonged thrombocytopenia (PT) is a serious complication after haematopoietic stem cell transplantation (HSCT). PT has been suggested to be associated with an increased platelet transfusion requirement and poor outcomes after transplantation. Due to the complex mechanism of PT development, it is difficult to diagnose in the early post-transplant period. Our study aimed to identify an early predictive marker for PT after HSCT. Previous studies showed that the clinical utility of immature platelet fraction (IPF) predicts platelet recovery after chemotherapy and successful engraftment. However, the relationship between IPF and PT after HSCT remains unclear. Fifty-two patients with malignant haematological diseases who underwent HSCT were included in the study. We observed the kinetics of recovery of haematological parameters after transplantation and performed receiver operating characteristics (ROC) curve analysis using data from the 52 HSCT patients.
The days to rise and peak of IPF, absolute IPF count (A-IPF) and highly fluorescent IPF (H-IPF) were almost synchronised in all patients, at day 10 and day 15, respectively. The begin to rise levels of IPF, H-IPF and A-IPF were all significantly lower in the PT group than in the good engraftment (GE) group (p=0.0016, p=0.0094, p=0.0086, respectively). The peak levels of IPF were significantly lower in the PT group than the GE group (p=0.0036). However, the peaks of H-IPF and A-IPF were not statistically significant between the two groups (p=0.3383, p=0.0887, respectively). The area under the ROC curve (AUC) of IPF rise was 0.739 (95% CI 0.583–0.896; p<0.05) and the cut-off value was 3.5%, while the AUC of IPF peak was 0.800 (95% CI 0.637–0.962; p<0.01) and the cut-off value was 8.0%. In conclusion, early low levels of IPF predict the development of PT after HSCT. These findings may help improve the management and treatment strategies for PT after HSCT.
期刊介绍:
Published by Elsevier from 2016
Pathology is the official journal of the Royal College of Pathologists of Australasia (RCPA). It is committed to publishing peer-reviewed, original articles related to the science of pathology in its broadest sense, including anatomical pathology, chemical pathology and biochemistry, cytopathology, experimental pathology, forensic pathology and morbid anatomy, genetics, haematology, immunology and immunopathology, microbiology and molecular pathology.