Vat-based photopolymerization 3D printing: From materials to topical and transdermal applications

IF 10.7 1区 医学 Q1 PHARMACOLOGY & PHARMACY Asian Journal of Pharmaceutical Sciences Pub Date : 2024-08-01 DOI:10.1016/j.ajps.2024.100940
{"title":"Vat-based photopolymerization 3D printing: From materials to topical and transdermal applications","authors":"","doi":"10.1016/j.ajps.2024.100940","DOIUrl":null,"url":null,"abstract":"<div><p>Three-dimensional (3D) printing is an innovative manufacturing method with the potential to revolutionize topical and transdermal dosage forms. Nowadays, it is established that Vat-based photopolymerization (VP) 3D printing technologies offer superior printing efficiency and versatility compared to other 3D printing technologies available on the market. However, there are some limitations that impair their full application in pharmaceutical contexts, such as the lack of a range of biocompatible materials for topical and transdermal applications. This review article explores all types of VP-based 3D printing and discusses the relevance of implementing this kind of technology. We start with a detailed description of the printing process, focusing on the commercial materials available and lab-made resins proposed by different authors. We also review recent studies in this field, which mainly focus on the fabrication of transdermal devices based on microneedle arrays. In the future, it is expected that the manufacturers of 3D printers invest in modifications to the printing apparatus to allow the simultaneous printing of different resins and/or compound types, which will open frontiers to the personalization of treatment approaches.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1818087624000576/pdfft?md5=64bef77d0edd1ff8a02ddc6a706f9983&pid=1-s2.0-S1818087624000576-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1818087624000576","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional (3D) printing is an innovative manufacturing method with the potential to revolutionize topical and transdermal dosage forms. Nowadays, it is established that Vat-based photopolymerization (VP) 3D printing technologies offer superior printing efficiency and versatility compared to other 3D printing technologies available on the market. However, there are some limitations that impair their full application in pharmaceutical contexts, such as the lack of a range of biocompatible materials for topical and transdermal applications. This review article explores all types of VP-based 3D printing and discusses the relevance of implementing this kind of technology. We start with a detailed description of the printing process, focusing on the commercial materials available and lab-made resins proposed by different authors. We also review recent studies in this field, which mainly focus on the fabrication of transdermal devices based on microneedle arrays. In the future, it is expected that the manufacturers of 3D printers invest in modifications to the printing apparatus to allow the simultaneous printing of different resins and/or compound types, which will open frontiers to the personalization of treatment approaches.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
釜基光聚合三维打印:从材料到局部和透皮应用
三维(3D)打印是一种创新的制造方法,有望彻底改变外用和透皮剂型。如今,与市场上的其他三维打印技术相比,基于蒸馏罐的光聚合(VP)三维打印技术具有更高的打印效率和多功能性。然而,这些技术在制药领域的全面应用还存在一些局限性,例如缺乏一系列用于局部和透皮应用的生物相容性材料。这篇综述文章探讨了各种基于 VP 的 3D 打印技术,并讨论了采用这种技术的意义。我们首先详细介绍了打印过程,重点是现有的商业材料和不同作者提出的实验室自制树脂。我们还回顾了该领域的最新研究,主要集中在基于微针阵列的透皮装置的制造上。未来,3D 打印机制造商有望投资改造打印设备,以便同时打印不同的树脂和/或化合物类型,这将为个性化治疗方法开辟新的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asian Journal of Pharmaceutical Sciences
Asian Journal of Pharmaceutical Sciences Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
18.30
自引率
2.90%
发文量
11
审稿时长
14 days
期刊介绍: The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.
期刊最新文献
A natural compound-empowered podophyllotoxin prodrug nanoassembly magnifies efficacy-toxicity benefits in cancer chemotherapy Antibiotic-loaded lactoferrin nanoparticles as a platform for enhanced infection therapy through targeted elimination of intracellular bacteria Pulmonary fibroblast-specific delivery of siRNA exploiting exosomes-based nanoscaffolds for IPF treatment Rational fusion design inspired by cell-penetrating peptide: SS31/S-14 G Humanin hybrid peptide with amplified multimodal efficacy and bio-permeability for the treatment of Alzheimer's disease Recent progress of ferroptosis in cancers and drug discovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1