Qingqing Yu , Jinglin Chen , Chen Zhong , Le Yu , Yunhe Zhu , Xueyan Xi , Boyu Du
{"title":"Polyphyllin VII as a potential medication for targeting epithelial mesenchymal transitionin in thyroid cancer","authors":"Qingqing Yu , Jinglin Chen , Chen Zhong , Le Yu , Yunhe Zhu , Xueyan Xi , Boyu Du","doi":"10.1016/j.jphs.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>The need for novel anti-thyroid cancer (TC) medications is urgent due to the rising incidence and metastatic rates of malignant TC. In this study, we investigated the effect of Polyphyllin VII (PPVII) to TC cells, and explored their potential mechanism. B-CPAP and TPC-1 cells, were used to analyze the antitumor activity of PPVII by quantifying cell growth and metastasis as well as to study the effect on epithelial mesenchymal transition (EMT). The results showed that PPVII dramatically reduced the capacity of B-CPAP and TPC-1 cells to proliferate and migrate in a dose-response manner. Following PPVII treatment of TC cells, the expression levels of E-cadherin progressively increased and were higher than the control group, while the expression levels of EMT-related genes Vimentin, N-cadherin, Slug, Zeb-1, and Foxe1 gradually declined and were lower than the control group. It was proposed that PPVII might prevent TC from undergoing EMT. The Foxe1 gene was shown to be significantly expressed in TC, and a statistically significant variation in Foxe1 expression was observed across clinical stages of the disease, according to a bioinformatics database study. There was a strong link between the expression of the Foxe1 gene and the EMT-related gene. In the meantime, TC cells' expression of Foxe1 can be inhibited by PPVII. In conclusion, our results showed that PPVII may as a potential medication for targeting EMT in thyroid cancer.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"156 2","pages":"Pages 49-56"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861324000471/pdfft?md5=d3fe5cae10081903a715d4c4842c8aef&pid=1-s2.0-S1347861324000471-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347861324000471","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The need for novel anti-thyroid cancer (TC) medications is urgent due to the rising incidence and metastatic rates of malignant TC. In this study, we investigated the effect of Polyphyllin VII (PPVII) to TC cells, and explored their potential mechanism. B-CPAP and TPC-1 cells, were used to analyze the antitumor activity of PPVII by quantifying cell growth and metastasis as well as to study the effect on epithelial mesenchymal transition (EMT). The results showed that PPVII dramatically reduced the capacity of B-CPAP and TPC-1 cells to proliferate and migrate in a dose-response manner. Following PPVII treatment of TC cells, the expression levels of E-cadherin progressively increased and were higher than the control group, while the expression levels of EMT-related genes Vimentin, N-cadherin, Slug, Zeb-1, and Foxe1 gradually declined and were lower than the control group. It was proposed that PPVII might prevent TC from undergoing EMT. The Foxe1 gene was shown to be significantly expressed in TC, and a statistically significant variation in Foxe1 expression was observed across clinical stages of the disease, according to a bioinformatics database study. There was a strong link between the expression of the Foxe1 gene and the EMT-related gene. In the meantime, TC cells' expression of Foxe1 can be inhibited by PPVII. In conclusion, our results showed that PPVII may as a potential medication for targeting EMT in thyroid cancer.
期刊介绍:
Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.