Enhancing Forest‐Steppe Ecotone Mapping Accuracy through Synthetic ApertureRadar‐Optical Remote Sensing Data Fusion and Object-based Analysis

Ruilin Wang, Meng Wang, Xiaofang Sun, Junbang Wang, Guicai Li
{"title":"Enhancing Forest‐Steppe Ecotone Mapping Accuracy through Synthetic ApertureRadar‐Optical Remote Sensing Data Fusion and Object-based Analysis","authors":"Ruilin Wang, Meng Wang, Xiaofang Sun, Junbang Wang, Guicai Li","doi":"10.14358/pers.23-00070r2","DOIUrl":null,"url":null,"abstract":"In ecologically vulnerable regions with intricate land use dynamics, such as ecotones, frequent and intense land use transitions unfold. Therefore, the precise and timely mapping of land use becomes imperative. With that goal, by using principal component analysis, we integrated Sentinel-1\n and Sentinel-2 data, using an object-oriented methodology to craft a 10-meter-resolution land use map for the forest‐grassland ecological zone of the Greater Khingan Mountains spanning the years 2019 to 2021. Our research reveals a substantial enhancement in classification accuracy\n achieved through the integration of synthetic aperture radar‐optical remote sensing data. Notably, our products outperformed other land use/land cover data sets, excelling particularly in delineating intricate riverine wetlands. The 10-meter land use product stands as a pivotal guide,\n offering indispensable support for sustainable development, ecological assessment, and conservation endeavors in the Greater Khingan Mountains region.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"72 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00070r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In ecologically vulnerable regions with intricate land use dynamics, such as ecotones, frequent and intense land use transitions unfold. Therefore, the precise and timely mapping of land use becomes imperative. With that goal, by using principal component analysis, we integrated Sentinel-1 and Sentinel-2 data, using an object-oriented methodology to craft a 10-meter-resolution land use map for the forest‐grassland ecological zone of the Greater Khingan Mountains spanning the years 2019 to 2021. Our research reveals a substantial enhancement in classification accuracy achieved through the integration of synthetic aperture radar‐optical remote sensing data. Notably, our products outperformed other land use/land cover data sets, excelling particularly in delineating intricate riverine wetlands. The 10-meter land use product stands as a pivotal guide, offering indispensable support for sustainable development, ecological assessment, and conservation endeavors in the Greater Khingan Mountains region.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过合成孔径雷达-光学遥感数据融合和基于对象的分析提高森林-干草原生态区绘图精度
在生态脆弱、土地利用动态错综复杂的地区,如生态区,土地利用的过渡频繁而激烈。因此,精确、及时地绘制土地利用图势在必行。为此,我们利用主成分分析法整合了哨兵-1 和哨兵-2 数据,采用面向对象的方法绘制了大兴安岭森林草原生态区 10 米分辨率的土地利用图,时间跨度为 2019 年至 2021 年。我们的研究表明,通过整合合成孔径雷达-光学遥感数据,分类精度得到了大幅提升。值得注意的是,我们的产品优于其他土地利用/土地覆被数据集,尤其在划分错综复杂的河流湿地方面表现出色。10 米土地利用产品具有举足轻重的指导作用,为大兴安岭地区的可持续发展、生态评估和保护工作提供了不可或缺的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ReLAP-Net: Residual Learning and Attention Based Parallel Network for Hyperspectral and Multispectral Image Fusion Book Review ‐ Top 20 Essential Skills for ArcGIS Pro A Surface Water Extraction Method Integrating Spectral and Temporal Characteristics Assessing the Utility of Uncrewed Aerial System Photogrammetrically Derived Point Clouds for Land Cover Classification in the Alaska North Slope GIS Tips & Tricks ‐ USGS Adds 100K Topo Scale to OnDemand Map Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1