{"title":"Conformal structure-preserving SVM methods for the nonlinear Schrödinger equation with weakly linear damping term","authors":"Xin Li , Luming Zhang","doi":"10.1016/j.apnum.2024.06.024","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, by applying the supplementary variable method (SVM), some high-order, conformal structure-preserving, linearized algorithms are developed for the damped nonlinear Schrödinger equation. We derive the well-determined SVM systems with the conformal properties and they are then equivalent to nonlinear equality constrained optimization problems for computation. The deduced optimization models are discretized by using the Gauss type Runge-Kutta method and the prediction-correction technique in time as well as the Fourier pseudo-spectral method in space. Numerical results and some comparisons between this method and other reported methods are given to favor the suggested method in the overall performance. It is worthwhile to emphasize that the numerical strategy in this work could be extended to other conservative or dissipative system for designing high-order structure-preserving algorithms.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"205 ","pages":"Pages 120-136"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001727","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, by applying the supplementary variable method (SVM), some high-order, conformal structure-preserving, linearized algorithms are developed for the damped nonlinear Schrödinger equation. We derive the well-determined SVM systems with the conformal properties and they are then equivalent to nonlinear equality constrained optimization problems for computation. The deduced optimization models are discretized by using the Gauss type Runge-Kutta method and the prediction-correction technique in time as well as the Fourier pseudo-spectral method in space. Numerical results and some comparisons between this method and other reported methods are given to favor the suggested method in the overall performance. It is worthwhile to emphasize that the numerical strategy in this work could be extended to other conservative or dissipative system for designing high-order structure-preserving algorithms.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.