{"title":"The antiviral drug Ribavirin effectively modulates the amyloid transformation of α-Synuclein protein","authors":"","doi":"10.1016/j.compbiolchem.2024.108155","DOIUrl":null,"url":null,"abstract":"<div><p>α-Synuclein (α-syn) is an intrinsically disordered protein, linked genetically and neuropathologically to Parkinson's disease where this protein aggregates within the brain. Hence, identifying compounds capable of impeding α-syn aggregation puts forward a promising approach for the development of disease-modifying therapies. Herein, we investigated the efficacy of Ribavirin, an FDA-approved compound, in curtailing α-syn amyloid transformation, employing an array of bioinformatic tools and systematic analysis using biophysical techniques. Ribavirin shows a dose dependent anti-aggregation propensity where it effectively subdued the formation of mature fibrillar aggregates of α-syn, where even at the lowest concentration there was a 69 % reduction in the ThT maxima. Ribavirin averts the formation of mature fibrillar aggregates by interacting with the NAC domain of α-syn. Ribavirin redirects the amyloid transformation of α-syn by emanating aggregates of lower order with reduced cross β-sheet signature and revokes the formation of on-pathway amyloids. Collectively, our study puts forward the novel potency of Ribavirin as a promising molecule for therapeutic intervention in Parkinson’s disease.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001439","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
α-Synuclein (α-syn) is an intrinsically disordered protein, linked genetically and neuropathologically to Parkinson's disease where this protein aggregates within the brain. Hence, identifying compounds capable of impeding α-syn aggregation puts forward a promising approach for the development of disease-modifying therapies. Herein, we investigated the efficacy of Ribavirin, an FDA-approved compound, in curtailing α-syn amyloid transformation, employing an array of bioinformatic tools and systematic analysis using biophysical techniques. Ribavirin shows a dose dependent anti-aggregation propensity where it effectively subdued the formation of mature fibrillar aggregates of α-syn, where even at the lowest concentration there was a 69 % reduction in the ThT maxima. Ribavirin averts the formation of mature fibrillar aggregates by interacting with the NAC domain of α-syn. Ribavirin redirects the amyloid transformation of α-syn by emanating aggregates of lower order with reduced cross β-sheet signature and revokes the formation of on-pathway amyloids. Collectively, our study puts forward the novel potency of Ribavirin as a promising molecule for therapeutic intervention in Parkinson’s disease.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.