K0.5MnO2@MWCNT@Super P Composite Electrode for Potassium-Ion Battery Cathode

IF 1.1 4区 工程技术 Q4 ELECTROCHEMISTRY Russian Journal of Electrochemistry Pub Date : 2024-07-17 DOI:10.1134/S1023193524700174
Shujie Yang, Xin Min, Hui Fan, Zhaohui Huang, Bin Ma, Bozhi Yang, Chaoqi Liu, Minghao Fang
{"title":"K0.5MnO2@MWCNT@Super P Composite Electrode for Potassium-Ion Battery Cathode","authors":"Shujie Yang,&nbsp;Xin Min,&nbsp;Hui Fan,&nbsp;Zhaohui Huang,&nbsp;Bin Ma,&nbsp;Bozhi Yang,&nbsp;Chaoqi Liu,&nbsp;Minghao Fang","doi":"10.1134/S1023193524700174","DOIUrl":null,"url":null,"abstract":"<p>With the development of energy storage, potassium ion batteries (PIBs) have gradually become a suitable substitute for lithium-ion batteries. Where the layered transition metal oxides cathode materials of potassium ion batteries have attracted much attention due to their high theoretical capacity, unique two-dimensional potassium ion diffusion channels, simple preparation and low cost. In this work, we designed a K<sub>0.5</sub>MnO<sub>2</sub>@MWCNT@Super P (KMP) composite electrode with P3-type layered structure as the cathode in PIBs through coprecipitation—high temperature sintering method. The SEM results show that the prepared KMP composite electrodes are secondary particles formed by three-dimensional network structures and particles through point–line contact and point–point contact. As a result, the composite electrode with a 7 : 2 : 1 weight ratio of K<sub>0.5</sub>MnO<sub>2</sub>, conductive carbon (Super-P: MWCNT = 1 : 1) and PVDF delivers a high initial discharge capacity of 112.7 mA h g<sup>–1</sup> at a current density of 20 mA g<sup>–1</sup> and 72.1 mA h g<sup>–1</sup> at 100 mA g<sup>–1</sup>. And, it has a capacity retention of 44% at 100 mA g<sup>–1</sup> after 50 cycles. The results show that the unique three-dimensional network structure not only improves the conductivity of K<sub>0.5</sub>MnO<sub>2</sub> material, but also effectively alleviates the volume change caused by K<sup>+</sup> in the charging and discharging process. This study provides a new way to develop layered cathode materials for high energy density potassium ion batteries.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1023193524700174","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of energy storage, potassium ion batteries (PIBs) have gradually become a suitable substitute for lithium-ion batteries. Where the layered transition metal oxides cathode materials of potassium ion batteries have attracted much attention due to their high theoretical capacity, unique two-dimensional potassium ion diffusion channels, simple preparation and low cost. In this work, we designed a K0.5MnO2@MWCNT@Super P (KMP) composite electrode with P3-type layered structure as the cathode in PIBs through coprecipitation—high temperature sintering method. The SEM results show that the prepared KMP composite electrodes are secondary particles formed by three-dimensional network structures and particles through point–line contact and point–point contact. As a result, the composite electrode with a 7 : 2 : 1 weight ratio of K0.5MnO2, conductive carbon (Super-P: MWCNT = 1 : 1) and PVDF delivers a high initial discharge capacity of 112.7 mA h g–1 at a current density of 20 mA g–1 and 72.1 mA h g–1 at 100 mA g–1. And, it has a capacity retention of 44% at 100 mA g–1 after 50 cycles. The results show that the unique three-dimensional network structure not only improves the conductivity of K0.5MnO2 material, but also effectively alleviates the volume change caused by K+ in the charging and discharging process. This study provides a new way to develop layered cathode materials for high energy density potassium ion batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于钾离子电池阴极的 K0.5MnO2@MWCNT@Super P 复合电极
摘要随着储能技术的发展,钾离子电池逐渐成为锂离子电池的替代品。其中,层状过渡金属氧化物钾离子电池正极材料因其理论容量高、独特的二维钾离子扩散通道、制备简单、成本低廉等特点而备受关注。本研究通过共沉淀-高温烧结法设计了一种具有 P3 型层状结构的 K0.5MnO2@MWCNT@Super P(KMP)复合电极,作为 PIBs 的阴极。扫描电镜结果表明,制备的 KMP 复合电极是由三维网络结构和颗粒通过点线接触和点接触形成的二次颗粒。因此,K0.5MnO2、导电碳(Super-P: MWCNT = 1:1)和 PVDF 的重量比为 7 : 2 : 1 的复合电极在电流密度为 20 mA g-1 时的初始放电容量高达 112.7 mA h g-1,在 100 mA g-1 时的初始放电容量为 72.1 mA h g-1。在 100 mA g-1 条件下,经过 50 次循环后,其容量保持率为 44%。结果表明,独特的三维网络结构不仅提高了 K0.5MnO2 材料的导电性,还有效缓解了充放电过程中 K+引起的体积变化。这项研究为开发高能量密度钾离子电池的层状阴极材料提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Journal of Electrochemistry
Russian Journal of Electrochemistry 工程技术-电化学
CiteScore
1.90
自引率
8.30%
发文量
102
审稿时长
6 months
期刊介绍: Russian Journal of Electrochemistry is a journal that covers all aspects of research in modern electrochemistry. The journal welcomes submissions in English or Russian regardless of country and nationality of authors.
期刊最新文献
Electrochemical Synthesis of a Composite of Few-Layer Graphene Structures with PdNi-Alloy Nanoparticles and Its Electrocatalytic Activity in the Methanol Oxidation Reaction Numerical Modeling of Electrolyte-Supported Button Solid Oxide Direct Carbon Fuel Cell Based on Boudouard Reaction Electrocatalysts Based on Platinized Titanium Dioxide Doped with Ruthenium for Hydrogen and Carbon-Monoxide Potentiometric Sensors A High Discharge Power Density Single Cell of Hydrogen–Vanadium Flow Battery Studies on Porous Nanostructured Palladium–Cobalt–Silica as Heterogeneous Catalysts for Oxygen Evolution Reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1