Bringing Auto-tuning to HIP: Analysis of Tuning Impact and Difficulty on AMD and Nvidia GPUs

Milo Lurati, Stijn Heldens, Alessio Sclocco, Ben van Werkhoven
{"title":"Bringing Auto-tuning to HIP: Analysis of Tuning Impact and Difficulty on AMD and Nvidia GPUs","authors":"Milo Lurati, Stijn Heldens, Alessio Sclocco, Ben van Werkhoven","doi":"arxiv-2407.11488","DOIUrl":null,"url":null,"abstract":"Many studies have focused on developing and improving auto-tuning algorithms\nfor Nvidia Graphics Processing Units (GPUs), but the effectiveness and\nefficiency of these approaches on AMD devices have hardly been studied. This\npaper aims to address this gap by introducing an auto-tuner for AMD's HIP. We\ndo so by extending Kernel Tuner, an open-source Python library for auto-tuning\nGPU programs. We analyze the performance impact and tuning difficulty for four\nhighly-tunable benchmark kernels on four different GPUs: two from Nvidia and\ntwo from AMD. Our results demonstrate that auto-tuning has a significantly\nhigher impact on performance on AMD compared to Nvidia (10x vs 2x).\nAdditionally, we show that applications tuned for Nvidia do not perform\noptimally on AMD, underscoring the importance of auto-tuning specifically for\nAMD to achieve high performance on these GPUs.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many studies have focused on developing and improving auto-tuning algorithms for Nvidia Graphics Processing Units (GPUs), but the effectiveness and efficiency of these approaches on AMD devices have hardly been studied. This paper aims to address this gap by introducing an auto-tuner for AMD's HIP. We do so by extending Kernel Tuner, an open-source Python library for auto-tuning GPU programs. We analyze the performance impact and tuning difficulty for four highly-tunable benchmark kernels on four different GPUs: two from Nvidia and two from AMD. Our results demonstrate that auto-tuning has a significantly higher impact on performance on AMD compared to Nvidia (10x vs 2x). Additionally, we show that applications tuned for Nvidia do not perform optimally on AMD, underscoring the importance of auto-tuning specifically for AMD to achieve high performance on these GPUs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将自动调整引入 HIP:分析调整对 AMD 和 Nvidia GPU 的影响和难度
许多研究都专注于开发和改进针对 Nvidia 图形处理器(GPU)的自动调整算法,但这些方法在 AMD 设备上的有效性和效率几乎没有得到研究。本文旨在通过为 AMD 的 HIP 引入自动调谐器来弥补这一不足。我们通过扩展 Kernel Tuner 来实现这一目标,Kernel Tuner 是一个用于自动调整 GPU 程序的开源 Python 库。我们分析了在四种不同 GPU(两种来自 Nvidia,两种来自 AMD)上对四种高度可调谐基准内核的性能影响和调谐难度。我们的结果表明,与 Nvidia 相比,自动调整对 AMD 性能的影响要大得多(10 倍对 2 倍)。此外,我们还表明,为 Nvidia 调整的应用程序在 AMD 上的性能并不理想,这凸显了专门为 AMD 进行自动调整以在这些 GPU 上实现高性能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HRA: A Multi-Criteria Framework for Ranking Metaheuristic Optimization Algorithms Temporal Load Imbalance on Ondes3D Seismic Simulator for Different Multicore Architectures Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study The Landscape of GPU-Centric Communication A Global Perspective on the Past, Present, and Future of Video Streaming over Starlink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1