Quantum‐Noise‐Driven Generative Diffusion Models

Marco Parigi, Stefano Martina, Filippo Caruso
{"title":"Quantum‐Noise‐Driven Generative Diffusion Models","authors":"Marco Parigi, Stefano Martina, Filippo Caruso","doi":"10.1002/qute.202300401","DOIUrl":null,"url":null,"abstract":"Generative models realized with Machine Learning (ML) techniques are powerful tools to infer complex and unknown data distributions from a finite number of training samples in order to produce new synthetic data. Diffusion Models (DMs) are an emerging framework that have recently overcome Generative Adversarial Networks (GANs) in creating high‐quality images. Here, is proposed and discussed the quantum generalization of DMs, i.e., three Quantum‐Noise‐Driven Generative Diffusion Models (QNDGDMs) that could be experimentally tested on real quantum systems. The idea is to harness unique quantum features, in particular the non‐trivial interplay among coherence, entanglement, and noise that the currently available noisy quantum processors do unavoidably suffer from, in order to overcome the main computational burdens of classical diffusion models during inference. Hence, the suggestion is to exploit quantum noise not as an issue to be detected and solved but instead as a beneficial key ingredient to generate complex probability distributions from which a quantum processor might sample more efficiently than a classical one. Three examples of the numerical simulations are also included for the proposed approaches. The results are expected to pave the way for new quantum‐inspired or quantum‐based generative diffusion algorithms addressing tasks as data generation with widespread real‐world applications.","PeriodicalId":501028,"journal":{"name":"Advanced Quantum Technologies","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Quantum Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/qute.202300401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generative models realized with Machine Learning (ML) techniques are powerful tools to infer complex and unknown data distributions from a finite number of training samples in order to produce new synthetic data. Diffusion Models (DMs) are an emerging framework that have recently overcome Generative Adversarial Networks (GANs) in creating high‐quality images. Here, is proposed and discussed the quantum generalization of DMs, i.e., three Quantum‐Noise‐Driven Generative Diffusion Models (QNDGDMs) that could be experimentally tested on real quantum systems. The idea is to harness unique quantum features, in particular the non‐trivial interplay among coherence, entanglement, and noise that the currently available noisy quantum processors do unavoidably suffer from, in order to overcome the main computational burdens of classical diffusion models during inference. Hence, the suggestion is to exploit quantum noise not as an issue to be detected and solved but instead as a beneficial key ingredient to generate complex probability distributions from which a quantum processor might sample more efficiently than a classical one. Three examples of the numerical simulations are also included for the proposed approaches. The results are expected to pave the way for new quantum‐inspired or quantum‐based generative diffusion algorithms addressing tasks as data generation with widespread real‐world applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子噪声驱动的生成扩散模型
利用机器学习(ML)技术实现的生成模型是一种强大的工具,可以从有限的训练样本中推断出复杂和未知的数据分布,从而生成新的合成数据。扩散模型(DMs)是一种新兴框架,最近在创建高质量图像方面战胜了生成对抗网络(GANs)。本文提出并讨论了 DMs 的量子概论,即三种量子噪声驱动生成扩散模型(QNDGDMs),可在真实量子系统上进行实验测试。我们的想法是利用独特的量子特性,特别是相干性、纠缠和噪声之间的非微妙相互作用,以克服经典扩散模型在推理过程中的主要计算负担。因此,我们建议利用量子噪声,而不是将其作为需要检测和解决的问题,而是将其作为产生复杂概率分布的有利关键因素,量子处理器从中采样可能比经典处理器更有效率。针对所提出的方法,我们还提供了三个数值模拟实例。这些结果有望为新的量子启发或基于量子的生成扩散算法铺平道路,从而解决数据生成等任务,并在现实世界中得到广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing the Sensitivity of Quantum Fiber‐Optical Gyroscope via a Non‐Gaussian‐State Probe Implementation of Entanglement Witnesses with Quantum Circuits Quantum Effect Enables Large Elastocaloric Effect in Monolayer MoSi2N4${\rm MoSi}_2{\rm N}_4$ and Graphene Dynamic Phase Enabled Topological Mode Steering in Composite Su‐Schrieffer–Heeger Waveguide Arrays Variational Quantum Algorithm‐Preserving Feasible Space for Solving the Uncapacitated Facility Location Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1