Crystal structure validation of verinurad via proton-detected ultra-fast MAS NMR and machine learning†

IF 3.4 3区 化学 Q2 Chemistry Faraday Discussions Pub Date : 2024-07-17 DOI:10.1039/D4FD00076E
Daria Torodii, Jacob B. Holmes, Pinelopi Moutzouri, Sten O. Nilsson Lill, Manuel Cordova, Arthur C. Pinon, Kristof Grohe, Sebastian Wegner, Okky Dwichandra Putra, Stefan Norberg, Anette Welinder, Staffan Schantz and Lyndon Emsley
{"title":"Crystal structure validation of verinurad via proton-detected ultra-fast MAS NMR and machine learning†","authors":"Daria Torodii, Jacob B. Holmes, Pinelopi Moutzouri, Sten O. Nilsson Lill, Manuel Cordova, Arthur C. Pinon, Kristof Grohe, Sebastian Wegner, Okky Dwichandra Putra, Stefan Norberg, Anette Welinder, Staffan Schantz and Lyndon Emsley","doi":"10.1039/D4FD00076E","DOIUrl":null,"url":null,"abstract":"<p >The recent development of ultra-fast magic-angle spinning (MAS) (&gt;100 kHz) provides new opportunities for structural characterization in solids. Here, we use NMR crystallography to validate the structure of verinurad, a microcrystalline active pharmaceutical ingredient. To do this, we take advantage of <small><sup>1</sup></small>H resolution improvement at ultra-fast MAS and use solely <small><sup>1</sup></small>H-detected experiments and machine learning methods to assign all the experimental proton and carbon chemical shifts. This framework provides a new tool for elucidating chemical information from crystalline samples with limited sample volume and yields remarkably faster acquisition times compared to <small><sup>13</sup></small>C-detected experiments, without the need to employ dynamic nuclear polarization.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":" 0","pages":" 143-158"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/fd/d4fd00076e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/fd/d4fd00076e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

The recent development of ultra-fast magic-angle spinning (MAS) (>100 kHz) provides new opportunities for structural characterization in solids. Here, we use NMR crystallography to validate the structure of verinurad, a microcrystalline active pharmaceutical ingredient. To do this, we take advantage of 1H resolution improvement at ultra-fast MAS and use solely 1H-detected experiments and machine learning methods to assign all the experimental proton and carbon chemical shifts. This framework provides a new tool for elucidating chemical information from crystalline samples with limited sample volume and yields remarkably faster acquisition times compared to 13C-detected experiments, without the need to employ dynamic nuclear polarization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过质子检测超快 MAS NMR 和机器学习确定 Verinurad 的晶体结构
超快速 MAS(100 kHz)的最新发展为固体结构表征提供了新的机遇。在此,我们利用核磁共振晶体学验证了微晶活性药物成分 verinurad 的结构。为此,我们利用超快 MAS 的 1H 分辨率改进,并完全使用 1H 检测实验和机器学习方法来分配所有实验质子和碳化学位移。这一框架为从样品体积有限的晶体样品中阐明化学信息提供了新的工具,与 13C 检测实验相比,采集时间大大缩短,而且无需使用动态核偏振。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Faraday Discussions
Faraday Discussions CHEMISTRY, PHYSICAL-
CiteScore
4.90
自引率
0.00%
发文量
259
审稿时长
2.8 months
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
期刊最新文献
Back cover List of participants Poster list Back cover Poster list
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1